Mouse Anti- Nitrotyrosine Monoclonal IgG2a__Mouse Anti- Nitrotyrosine Monoclonal IgG2a β-Nicotinamide mononucleotide
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
39B6
Isotype
IgG2a
Specificity
Recognizes 3-nitrotyrosine moieties. No detectable cross-reactivity with non-nitrated tyrosine. Not species specific.
Cite This Product
Mouse Anti- Nitrotyrosine Monoclonal, Clone 39B6 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-154)
Certificate of Analysis
0.7 µg/ml of SMC-154 was sufficient for detection of 5 µg SIN-1 treated BSA by Western Blot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
Nitro tyrosine Antibody, 3-Nitrotyrosine Antibody
Research Areas
Cancer, Alzheimer_s Disease, Cell Signaling, Neurodegeneration, Neuroscience, Nitration, Oxidative Stress, Parkinson_s Disease, Post-translational Modifications
Scientific Background
Protein tyrosine nitration results in a post-translational modification that is increasingly receiving attention as an important component of nitric oxide signaling (2). While multiple nonenzymatic mechanisms are known to be capable of producing nitrated tyrosine residues, most tyrosine nitration events involve catalysis by metalloproteins such as myeloperoxidase, eosino-philperoxidase (3), myoglobin, the cytochrome P-450s, superoxide dismutase and prostacyclin synthase.
Nitrotyrosine may also serve as a biomarker for the effects of reactive nitrogen oxides, based on tyrosine residues becoming nitrated in proteins at sites of inflammation induced tissue injury (1). The presence of nitro tyrosine-containing proteins therefore has shown high correlation to disease states such as atherosclerosis, Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (4).
References
1. Girault I. et al. (2001). Free Radical Biology and Medicine, 31 (11): 1375-1387.
2. Gow AJ, Farkouh CR, Munson DA, Posencheq MA, and Ischiropoulos H. (2004). Am J Physiol Lung Cell Mol Physiol. 287(2): L262-8.
3. Takemoto K. et al (2007). Acta Med Okayama 61(1): 17-30.
4. Reynolds MR. et al. (2006) J Nerosci. 26(42): 10636-45.
5. Pfister H., et al. (2002) Vet Pathol. 39: 190-199.
6. Khan J. et al. (1998) Biochem J. 330(2): 795-801.
Nitrotyrosine may also serve as a biomarker for the effects of reactive nitrogen oxides, based on tyrosine residues becoming nitrated in proteins at sites of inflammation induced tissue injury (1). The presence of nitro tyrosine-containing proteins therefore has shown high correlation to disease states such as atherosclerosis, Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (4).
2. Gow AJ, Farkouh CR, Munson DA, Posencheq MA, and Ischiropoulos H. (2004). Am J Physiol Lung Cell Mol Physiol. 287(2): L262-8.
3. Takemoto K. et al (2007). Acta Med Okayama 61(1): 17-30.
4. Reynolds MR. et al. (2006) J Nerosci. 26(42): 10636-45.
5. Pfister H., et al. (2002) Vet Pathol. 39: 190-199.
6. Khan J. et al. (1998) Biochem J. 330(2): 795-801.