Anti-Neuroligin 4 Antibody
Anti-Neuroligin 3 Antibody S110-29
Anti-Neuroligin 3 Antibody
S110-29__Mouse Anti-Rat Neuroligin 3 Monoclonal IgG1 Avibactam (sodium hydrate)
Storage Buffer
PBS pH 7.4, 50% glycerol, 0.1% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
S110-29
Isotype
IgG1
Specificity
Detects ~110kDa. Does not cross-react with Neuroligin-1, -2, -4 or -4.
Cite This Product
Mouse Anti-Rat Neuroligin 3 Monoclonal, Clone S110-29 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-471)
Certificate of Analysis
1 µg/ml of SMC-471 was sufficient for detection of Neuroligin 3 in 20 µg of rat brain lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
Gliotactin homolog Antibody, Neuroligin-3 Antibody, Nlgn3 Antibody, NLGN3_HUMAN Antibody
Research Areas
Cell Structure, Neuroscience, Post-Synaptic Markers
Cellular Localization
Cell Junction, Cell membrane, Synapse
Accession Number
AAA97871
Gene ID
171297
Swiss Prot
Q62889
Scientific Background
Neuroligins are Type I membrane proteins enriched in synaptic plasma membranes and clustered in synaptic clefts and postsynaptic densities. They have been characterized as neuronal cell surface proteins and are thought to be involved in cell-cell-interactions by forming intercellular junctions through binding to beta-neurexins. They play a major role in the formation or maintenance of synaptic junctions. They are also thought to be involved in the specification of excitatory synapses. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses.
Anti-Neuroligin 1 Antibody S97A-31
Anti-Neuroligin 1 Antibody
S97A-31__Mouse Anti-Rat Neuroligin 1 Monoclonal IgG1 NSC 405021
Product Name
Neuroligin 1 Antibody
Description
Mouse Anti-Rat Neuroligin 1 Monoclonal IgG1
Species Reactivity
Human, Mouse, Rat
Applications
,
WB
,
IHC
,
ICC/IF
Antibody Dilution
WB (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Rat
Immunogen
Fusion protein amino acids 718-843 (cytoplasmic C-terminus) of rat Neuroligin-1. Mouse: 99% identity (125/126 amino acids identical). Human: 99% identity (125/126 amino acids identical) >40% identity with Neuroligin-2 and -3.
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH 7.4, 50% glycerol, 0.1% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
S97A-31
Isotype
IgG1
Specificity
Detects ~120kDa. Does not cross-react with other Neuroligins.
Cite This Product
Mouse Anti-Rat Neuroligin 1 Monoclonal, Clone S97A-31 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-463)
Certificate of Analysis
2 µg/ml of SMC-463 was sufficient for detection of Neuroligin-1 in 20 µg of rat brain lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
NLG 1 Antibody, KIAA1070 Antibody, MGC45115 Antibody, Neuroligin-1 Antibody, NL1 Antibody, NLG1 Antibody, Nlgn1 Antibody
Research Areas
Cell Structure, Neuroscience, Post-Synaptic Markers
Cellular Localization
Cell Junction, Cell membrane, Postsynaptic cell membrane, Postsynaptic density, Synapse
Accession Number
NP_446320.1.
Gene ID
116647
Swiss Prot
Q62765
Scientific Background
Neuroligin-1 is a neuronal cell surface protein belonging to the type-B carboxylesterase/lipase family. It is a necessary component in the maturation of excitatory synapses for their normal, functional development, and is necessary to the regulation of synaptic plasticity and the development of long-term memory within the adult amygdala in mammals. It is believed to participate in cell-cell-interaction through the assembly of intracellular junction by the binding of beta-neurexins, and may also be a factor in the maintenance and assembly of synaptic junctions. It is also thought to have involvement in excitatory synaptic specification. Within brain tissue, Neuroligin-1 is primarily observed in neurons and spinal cord.
Mouse Anti-Rat Neuroligin 1 Monoclonal IgG1
WB
,
IHC
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Necrostatin
Necrostatin__Necroptosis inhibitor LY2157300
Product Name
Necrostatin
Description
Necroptosis inhibitor
Purity
>98%
CAS No.
4311-88-0
Molecular Formula
C13H13N3OS
Molecular Weight
259.33
Storage Temperature
-20ºC
Shipping Temperature
Shipped Ambient
Product Type
Inhibitor
Solubility
Soluble to 15 mM in ethanol, and to 30 mM in DMSO
Source
Synthetic
Appearance
Light Yellow Solid
SMILES
CN1C(=O)C(NC1=S)CC2=CNC3=CC=CC=C32
InChI
InChI=1S/C13H13N3OS/c1-16-12(17)11(15-13(16)18)6-8-7-14-10-5-3-2-4-9(8)10/h2-5,7,11,14H,6H2,1H3,(H,15,18)
InChIKey
TXUWMXQFNYDOEZ-UHFFFAOYSA-N
Safety Phrases
Classification: Caution: Substance not yet fully tested.
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
Cite This Product
Necrostatin (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-213)
Alternative Names
5-(1H-Indol-3-ylmethyl)-3-methyl-2-thioxo-4-imidazolidinone, Necrostatin-1
Research Areas
Cancer, Apoptosis
PubChem ID
2828334
Scientific Background
Necrostatin-1 is a specific inhibitor of necroptosis that reduces ischemic tissue damage in stroke models (1). It has also been recently confirmed to be an allosteric RIP1 kinase inhibitor, preotective in NMDa-mediated excitotoxicity and acute pathologies (2,3).
References
1. You Z., et al. (2008) J Cereb Blood Flow Metab. 28(9): 1564-1573.
2. Vandenabeele P., et al. (2010) Nat Rev Mol Cell Biol. 11:700-714.
3. Degterev A., et al. (2008) Nat Chem Biol. 4: 313-321.
Necroptosis inhibitor
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
2. Vandenabeele P., et al. (2010) Nat Rev Mol Cell Biol. 11:700-714.
3. Degterev A., et al. (2008) Nat Chem Biol. 4: 313-321.
Anti-NDR1 Antibody (pSer281+pThr282)
Anti-NDR1 Antibody (pSer281+pThr282)__Rabbit Anti-Human NDR1 (pSer281+pThr282) Polyclonal Oseltamivir (acid)
Product Name
NDR1 Antibody (pSer281+pThr282)
Description
Rabbit Anti-Human NDR1 (pSer281+pThr282) Polyclonal
Species Reactivity
Human
Applications
,
WB
,
AM
Antibody Dilution
WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
A phospho-specific peptide corresponding to residues surrounding Ser281 and Thr282 of human NDR1 (AA278-285)
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 54.19 kDa.
Cite This Product
Rabbit Anti-Human NDR1 (pSer281+pThr282) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1035)
Certificate of Analysis
A 1:250 dilution of SPC-1035 was sufficient for detection of NDR1 (pSer281+pThr282) in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
Alternative Names
NDR 1 antibody, NDR antibody, Ndr Ser/Thr kinase-like protein antibody, NDR1 antibody, NDR1 protein kinase antibody, Nuclear Dbf2 related kinase 1 antibody, Serine/threonine protein kinase 38 antibody, STK 38 antibody, STK38 antibody, STK38_HUMAN antibody
Cellular Localization
Cytoplasm, Nucleus
Accession Number
NP_009202
Gene ID
11329
Swiss Prot
Q15208
Scientific Background
STK38 is a negative regulator of MAP3K1/2 signalling. Converts MAP3K2 from its phosphorylated form to its nonphosphorylated form and inhibits autophosphorylation of MAP3K2. The MAPK/ERK pathway has been implicated in oncogenesis as either a promoter or inhibitor depending on the cancer system. Thus, the role of STK38 in cancer is likely highly contextual.
Rabbit Anti-Human NDR1 (pSer281+pThr282) Polyclonal
WB
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-NCC Antibody
Anti-NCC Antibody__Rabbit Anti-Rat NCC Polyclonal eFT509
Product Name
NCC Antibody
Description
Rabbit Anti-Rat NCC Polyclonal
Species Reactivity
Dog, Human, Mouse, Rat
Applications
,
WB
,
IHC
,
ICC/IF
,
IEM
Antibody Dilution
WB (1:1000), IHC (1:200); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Rat
Immunogen
Poduced against a synthetic peptide mapping to a segment of rat NCC (amino acids 74-95), N-terminal
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein A purified
Clonality
Polyclonal
Specificity
Detects ~160kDa.
Cite This Product
Rabbit Anti-Rat NCC Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-402)
Certificate of Analysis
1 µg/ml of SPC-402 was sufficient for detection of NCC3 in 10 µg of rat kidney tissue lysate by colorimetric immunoblot analysis using Goat anti-rabbit IgG:HRP as the secondary antibody.
Alternative Names
SLC12A3 Antibody, SCYL1 Antibody,CKb10 Antibody, MCP-4 Antibody, MGC17134 Antibody, NCC-1 Antibody, NCC1 Antibody, SCYA13 Antibody, CK-beta-10 Antibody, monocyte chemoattractant protein 4 Antibody, monocyte chemotactic protein 4 Antibody, new CC chemokine 1 Antibody, small inducible cytokine A13 Antibody, small inducible cytokine subfamily A (Cys-Cys) member 13 Antibody, chemokine (C-C) Antibody
Research Areas
Cancer, Ion Pumps/Transporters, Neuroscience, Pumps/Transporters
Cellular Localization
Membrane
Accession Number
NP_062218, NP_000330
Gene ID
54300, 6559
Swiss Prot
P55018, P55017
Scientific Background
NCC, a thiazide-sensitive NaCl co-transporter, is found on the apical membrane of the distal convoluted tubule, where it is the principal mediator of Na+ and Cl- reabsorption in this segment of the nephron. It is activated by phosphorylation, and has been implicated in renal NaCl and K+ homeostasis (1). Regulation of NCC expression and phosphorylation by dietary NACl restriction appears to involve SGK1(1). In experiments with angiotensin II-infused mice, increased sensitivity to Ang II may involved over-activity of NCC (2). Therefore, NCC is the target of thiazide diuretics used in the treatment of hypertension (1). Molecular experiments have also shown that NCC has been detected in the lens cortex, core and fiber cells of a rat (3).
References
1. Vallon V., Schroth J, Lang F, Kuhl D and Uchida S. (2009) Am J Physiol Renal Physiol. 297(3): F704-712.
2. Tiwari S., et al. (2009) Am J Nephrol. 30(6): 554-562.
3. Chee K.N., Vorontsova I., Lim J.C., Kistler J. and Donaldson P.J. (2010) Mol Vis. 16:800-812.
Rabbit Anti-Rat NCC Polyclonal
WB
,
IHC
,
ICC/IF
,
IEM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Tiwari S., et al. (2009) Am J Nephrol. 30(6): 554-562.
3. Chee K.N., Vorontsova I., Lim J.C., Kistler J. and Donaldson P.J. (2010) Mol Vis. 16:800-812.
Anti-Nav1.8 Antibody S134-12
Anti-Nav1.8 Antibody
S134-12__Mouse Anti-Rat Nav1.8 Monoclonal IgG2a BI-D1871
Product Name
Nav1.8 Antibody
Description
Mouse Anti-Rat Nav1.8 Monoclonal IgG2a
Species Reactivity
Human, Monkey, Mouse, Rat
Applications
,
WB
,
IHC
,
ICC/IF
,
AM
Antibody Dilution
WB (1:1000), IHC (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Rat
Immunogen
Fusion protein amino acids 1724-1956 of rat Nav1.8
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
S134-12
Isotype
IgG2a
Specificity
Detects ~220kDa. No cross reactivity against other Nav channels.
Cite This Product
Mouse Anti-Rat Nav1.8 Monoclonal, Clone S134-12 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-342)
Certificate of Analysis
1 µg/ml of SMC-342 was sufficient for detection of Nav1.8 in 10 µg of COS cell lysate transiently expressing Nav1.8 by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
mPN3 antibody, Peripheral nerve sodium channel 3 antibody, Pn3 (gene name) antibody, PN3 antibody, Scn10a antibody, Sensory neuron sodium channel antibody, Sns (gene name) antibody, SNS antibody, Sodium channel protein type 10 subunit alpha antibody, Sodium channel protein type X alpha subunit antibody, Voltage-gated sodium channel alpha subunit Nav1.8 antibody
Research Areas
Ion Channels, Neuroscience, Sodium Channels, Voltage-Gated Sodium Channels
Cellular Localization
Membrane
Accession Number
NP_058943.1
Gene ID
29571
Swiss Prot
Q62968
Scientific Background
Nav1.8 is a voltage-gated sodium channel and plays a critical role in the generation and conduction of action potentials and is thus important for electrical signaling by most excitable cells. Therapeutically, the association of pain insensitivity with the loss of function of a certain sodium channel may have implications. Since Nav1.8 is not present in cardiac muscle or neurons in the central nervous system, blockers of Nav1.8 will not have direct action on these cells and thus can have less side effects than current pain medications. By performing more studies, there is a possibility to develop a new generation of drugs that can reduce the pain intensity in animals.
References
1. Dray A. (2008) Br. J. Anaesth. 101(1): 48-58.
2. Dray A., Read S.J (2007) Arthritis Res. Ther. 9(3): 212.
3. Samuels M.E., teMorshe R.H., Lynch M.E., Drenth J.P. (2008) Mol Pain. 4: 21.
Mouse Anti-Rat Nav1.8 Monoclonal IgG2a
WB
,
IHC
,
ICC/IF
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Dray A., Read S.J (2007) Arthritis Res. Ther. 9(3): 212.
3. Samuels M.E., teMorshe R.H., Lynch M.E., Drenth J.P. (2008) Mol Pain. 4: 21.
Anti-Nav1.7 Antibody S68-6
Anti-Nav1.7 Antibody
S68-6__Mouse Anti-Human Nav1.7 Monoclonal IgG1 AZD4548
Product Name
Nav1.7 Antibody
Description
Mouse Anti-Human Nav1.7 Monoclonal IgG1
Species Reactivity
Human, Mouse, Rat, Hamster
Applications
,
WB
,
ICC/IF
,
IP
,
AM
Antibody Dilution
WB (1:1000), IHC (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Human
Immunogen
Fusion protein amino acids 1751-1946 (C-terminus) of human Nav1.7
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
S68-6
Isotype
IgG1
Specificity
Detects ~230kDa. No cross-reactivity against other Nav channels.
Cite This Product
Mouse Anti-Human Nav1.7 Monoclonal, Clone S68-6 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-314)
Certificate of Analysis
1 µg/ml of SMC-314 was sufficient for detection of Nav1.7 in 10 µg of HEK-293 cell lysate transiently expressing Nav1.7 by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
ETHA Antibody, hNE Na Antibody, NE NA Antibody, PN1 Antibody, SCN9A Antibody, voltage gated sodium channel subunit alpha Nav1 Antibody, peripheral sodium channel 1 Antibody, neuroendocrine sodium channel Antibody
Research Areas
Cancer, Cell Signaling, Ion Channels, Neuroscience, Sodium Channels, Voltage-Gated Sodium Channels
Cellular Localization
Membrane, Synapse
Accession Number
NP_002968.1
Gene ID
6335
Swiss Prot
Q15858
Scientific Background
Nav1.7 is a voltage-gated sodium channel and plays a critical role in the generation and conduction of action potentials and is thus important for electrical signaling by most excitable cells. Therapeutically, the association of pain insensitivity with the loss of function of a certain sodium channel may have implications. Since Nav1.7 is not present in cardiac muscle or neurons in the central nervous system, blockers of Nav1.7 will not have direct action on these cells and thus can have less side effects than current pain medications. By performing more studies, there is a possibility to develop a new generation of drugs that can reduce the pain intensity in animals (1-3).
References
1. Dray A. (2008) Br. J. Anaesth. 101(1): 48-58.
2. Dray A., Read S.J (2007) Arthritis Res. Ther. 9(3): 212.
3. Samuels M.E., teMorshe R.H., Lynch M.E., Drenth J.P. (2008) Mol Pain. 4: 21.
Mouse Anti-Human Nav1.7 Monoclonal IgG1
WB
,
ICC/IF
,
IP
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Dray A., Read S.J (2007) Arthritis Res. Ther. 9(3): 212.
3. Samuels M.E., teMorshe R.H., Lynch M.E., Drenth J.P. (2008) Mol Pain. 4: 21.
Anti-Nav beta3 Antibody S396-29
Anti-Nav beta3 Antibody
S396-29__Mouse Anti-Rat Nav beta3 Monoclonal IgG2B Irbinitinib
Product Name
Nav beta3 Antibody
Description
Mouse Anti-Rat Nav beta3 Monoclonal IgG2B
Species Reactivity
Human, Mouse, Rat
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Rat
Immunogen
Fusion protein amino acids 1-215 (full-length) of rat NavBeta3
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.1% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
S396-29
Isotype
IgG2b
Specificity
Detects ~40kDa. Does not cross-reat with NavBeta1, Navbeta2, or Navbeta4.
Cite This Product
Mouse Anti-Rat NaVbeta3 Monoclonal, Clone S396-29 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-490)
Certificate of Analysis
A 1:100 dilution of SMC-490 was sufficient for detection of NavBeta3 in 20 µg of mouse brain lysate by ECL immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
Sodium channel subunit beta-3 Antibody, Scn3b Antibody, KIAA1158 Antibody
Research Areas
Ion Channels, Neuroscience, Sodium Channels, Voltage-Gated Sodium Channels
Cellular Localization
Membrane
Accession Number
NP_620797.1
Gene ID
245956
Swiss Prot
Q9JK00
Scientific Background
Nav Beta 3 (SCN3B) belongs to the voltage-gated sodium channel group, and modulates channel gating kinetics. It inactivates the sodium channel opening more slowly than its Beta1 subunit. It is also unique in causing persistent sodium currents which are thought to amplify summation of synaptic imputs which is likely to increase the excitability of specific neurons to their individual inputs (2). Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (1, 2). Defects in SCN3B are the cause of Brugada syndrome (3).
References
1. Genes and mapped phenotypes. (n.d.). Retrieved March 26, 2015, from http://www.ncbi.nlm.nih.gov/gene/?term=Q9jK00
2. Qu Y., et al. (2001) Mol Cell Neurosci. 18(5): 570-580.
3. Ishikawa T., et al. (2013) Circ J. 77(4): 956-967.
Mouse Anti-Rat Nav beta3 Monoclonal IgG2B
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Qu Y., et al. (2001) Mol Cell Neurosci. 18(5): 570-580.
3. Ishikawa T., et al. (2013) Circ J. 77(4): 956-967.
Anti-Nav beta2 Antibody S395-68
Anti-Nav beta2 Antibody
S395-68__Mouse Anti-Mouse Nav beta2 Monoclonal IgG2B Actinomycin D
Product Name
Nav beta2 Antibody
Description
Mouse Anti-Mouse Nav beta2 Monoclonal IgG2B
Species Reactivity
Human, Mouse, Rat
Applications
,
WB
,
IHC
,
ICC/IF
Antibody Dilution
WB (1:1000); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Mouse
Immunogen
Fusion protein amino acids 1-215 (full-length) of mouse NavBeta2
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.1% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
S395-68
Isotype
IgG2b
Specificity
Detects ~40kDa. Does not cross-reat with NavBeta1, Navbeta3, or Navbeta4.
Cite This Product
Mouse Anti-Mouse Navbeta2 Monoclonal, Clone S395-68 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-485)
Certificate of Analysis
A 1:100 dilution of SMC-485 was sufficient for detection of NavBeta2 in 20 µg of mouse brain lysate by ECL immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Alternative Names
Sodium channel subunit beta-2 Antibody, Scn2b Antibody, UNQ326/PRO386 Antibody, Gm183 Antibody
Research Areas
Ion Channels, Neuroscience, Sodium Channels, Voltage-Gated Sodium Channels
Cellular Localization
Membrane
Accession Number
NP_001014761.1
Gene ID
72821
Swiss Prot
Q56A07
Scientific Background
NavBeta2 or Scn2B, plays a crucial role in the assembly, expression and functional modulation of the heterotrimeric complex of the sodium channel. The subunit, beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. It also interacts with TNR, playing a crucial role in clustering and regulation of activity of sodium channels at the nodes of Ranvier (1, 2). Mutations in this gene have been linked to Brugada syndrome and atrial fibrillation (3).
References
1. Genes and mapped phenotypes. (n.d.). Retrieved March 16, 2015, from http://www.ncbi.nlm.nih.gov/gene/6327
2. Eubanks J., Srinivasan J., Dinulos M.B., Disteche C.M., Catterall W.A. (1997) Neuroreport. 8(12): 2775-2779.
3. Riuro H., et al. (2013) Hum Mutat. 34(7): 961-966.
Mouse Anti-Mouse Nav beta2 Monoclonal IgG2B
WB
,
IHC
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Eubanks J., Srinivasan J., Dinulos M.B., Disteche C.M., Catterall W.A. (1997) Neuroreport. 8(12): 2775-2779.
3. Riuro H., et al. (2013) Hum Mutat. 34(7): 961-966.