Anti-HSP90C (Plant) Antibody__Rabbit Anti-Algae HSP90C (Plant) Polyclonal MLN4925
Anti-HSP90AB1 Antibody (pTyr484)
Anti-HSP90AB1 Antibody (pTyr484)__Rabbit Anti-Human HSP90AB1 (pTyr484) Polyclonal VT-465
Storage Buffer
PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 83.264 kDa.
Cite This Product
Rabbit Anti-Human HSP90AB1 (pTyr484) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-995)
Certificate of Analysis
A 1:250 dilution of SPC-995 was sufficient for detection of HSP90AB1 (pTyr484) in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/1913237
Alternative Names
HSP84 Antibody, HSP90B Antibody, HSPC2 Antibody, HSPCB Antibody, D6S182 Antibody, FLJ26984 Antibody
Cellular Localization
Cytoplasm, Melanosome
Accession Number
NP_001258898
Gene ID
3326
Swiss Prot
P08238
HSP90 alpha Protein
HSP90 alpha Protein__Human Recombinant HSP90 alpha Protein AZD9497
Product Name
HSP90 alpha Protein
Description
Human Recombinant HSP90 alpha Protein
Applications
,
WB
,
SDS-PAGE
,
ATPase Activity Assay
,
Surface Plasmon Resonance (SPR)
Concentration
Lot/batch specific. See included datasheet.
Conjugates
No tag
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Nature
Recombinant
Species
Human
Expression System
E. coli
Purity
>90%
Protein Length
Full Length
Storage Buffer
50mM Tris/HCl pH7.5, 5mM Bme, 0.3M NaCl, 10% glycerol
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Affinity Purified
Specificity
~90 kDa
Cite This Product
Human Recombinant HSP90 alpha Protein (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPR-101)
Certificate of Analysis
This product has been certified >90% pure using SDSPAGE analysis.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131971
Alternative Names
HSP86 Protein, HSP89A Protein, HSP90A Protein, HSP90AA1 Protein, HSPC1 Protein, HSPCA Protein, HSPCAL3 Protein
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm, Melanosome
Accession Number
AJ890083
Gene ID
3320
Swiss Prot
P0790, P07900
Scientific Background
HSP90 is a highly conserved and essential stress protein that is expressed in all eukaryotic cells. From a functional perspective, HSP90 participates in the folding, assembly, maturation, and stabilization of specific proteins as an integral component of a chaperone complex (1-4). Despite its label of being a heat-shock protein, HSP90 is one of the most highly expressed proteins in unstressed cells (1–2% of cytosolic protein). It carries out a number of housekeeping functions – including controlling the activity, turnover, and trafficking of a variety of proteins. Most of the HSP90-regulated proteins that have been discovered to date are involved in cell signaling (5-6). The number of proteins now know to interact with HSP90 is about 100. Target proteins include the kinases v-Src, Wee1, and c-Raf, transcriptional regulators such as p53 and steroid receptors, and the polymerases of the hepatitis B virus and telomerase.5. When bound to ATP, HSP90 interacts with co-chaperones Cdc37, p23, and an assortment of immunophilin-like proteins, forming a complex that stabilizes and protects target proteins from proteasomal degradation. In most cases, HSP90-interacting proteins have been shown to co-precipitate with HSP90 when carrying out immunoadsorption studies, and to exist in cytosolic heterocomplexes with it. In a number of cases, variations in HSP90 expression or HSP90 mutation has been shown to degrade signaling function via the protein or to impair a specific function of the protein (such as steroid binding, kinase activity) in vivo. Ansamycin antibiotics, such as geldanamycin and radicicol, inhibit HSP90 function (7). Looking for more information on HSP90? Visit our new HSP90 Scientific Resource Guide at http://www.HSP90.ca.
References
1. Arlander S.J.H., et al. (2003) J Biol Chem. 278: 52572-52577.
2. Pearl H., et al. (2001) Adv Protein Chem. 59:157-186.
3. Neckers L., et al. (2002) Trends Mol Med. 8:S55-S61.
4. Pratt W., Toft D. (2003) Exp Biol Med. 228:111-133.
5. Pratt W., Toft D. (1997) Endocr Rev. 18: 306–360.
6. Pratt W.B. (1998) Proc Soc Exptl Biol Med. 217: 420–434.
7. Whitesell L., et al. (1994) Proc Natl Acad Sci USA. 91: 8324– 8328.
Human Recombinant HSP90 alpha Protein
WB
,
SDS-PAGE
,
ATPase Activity Assay
,
Surface Plasmon Resonance (SPR)
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Pearl H., et al. (2001) Adv Protein Chem. 59:157-186.
3. Neckers L., et al. (2002) Trends Mol Med. 8:S55-S61.
4. Pratt W., Toft D. (2003) Exp Biol Med. 228:111-133.
5. Pratt W., Toft D. (1997) Endocr Rev. 18: 306–360.
6. Pratt W.B. (1998) Proc Soc Exptl Biol Med. 217: 420–434.
7. Whitesell L., et al. (1994) Proc Natl Acad Sci USA. 91: 8324– 8328.
Anti-HSP70B (Plant) Antibody
Anti-HSP70B (Plant) Antibody__Rabbit Anti-Algae HSP70B (Plant) Polyclonal EPZ-6439
Product Name
HSP70B (Plant) Antibody
Description
Rabbit Anti-Algae HSP70B (Plant) Polyclonal
Species Reactivity
Algae, Algae (Chlamydomonas reinhardtii), Algae (Desmodesmus subspicatus), Moss (Physcomitrella patens), Plant
Applications
,
WB
,
IP
Antibody Dilution
WB (1:10000); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Algae
Immunogen
Mature HSP70B protein expressed with N- and C- terminal hexahistidine tags in E.coli, purified with Ni-NTA
Conjugates
Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
Lyophilized rabbit Antiserum. For reconstitution add 100 µl of sterile water.
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Rabbit antiserum
Clonality
Polyclonal
Specificity
Detects ~70kDa.
Cite This Product
Rabbit Anti-Algae HSP70 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-315)
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131944
Alternative Names
HSP70 1 Antibody, HSP70 2 Antibody, HSP70.1 Antibody, HSP72 Antibody, HSPA1 Antibody, HSPA1A Antibody, HSPA1B Antibody
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm
Accession Number
XP_001696432.1
Gene ID
5722220
Swiss Prot
A8HYV3
Scientific Background
HSP70B (heat shock protein 70B) is a nuclear-encoded, chloroplast-targeted chaperone of the HSP70 family. It is the major HSP70 in the stroma of Chlamydomonas chloroplasts. It interacts with HSP90C, CGE1, CDJ2 and VIPP1 (1-3). It has been shown that using Chlamydomonas reinhardtii as plant model organism the alga encodes a HEP homolog (termed HEP2) that is localized to the stroma (4). HEP2 is expressed constitutively as a low abundance protein with an apparent molecular mass of ~21 kDa. In cell extracts HEP2 interacts with HSP70B in an ATP-dependent fashion. Coexpression of HSP70B with HEP2 in E. coli yields high levels of CGE1- binding competent HSP70B, which also displayed ATPase activity (4). Inactive HSP70B was more prone to proteolysis than active HSP70B. Although inactive HSP70B interacts with HEP2, it is not activated. Active HSP70B remains active for 48 h in the absence of HEP2, suggesting that HEP2 was not involved in maintaining HSP70B in an active state. However, it was found that some HSP70B expressed as a fusion protein with an N-terminal extension was activated when HEP2 was present during cleavage of the fusion protein, suggesting that in vivo HEP2 might be required for renewed folding of HSP70B after transit peptide cleavage (4). Looking for more information on HSP70? Visit our new HSP70 Scientific Resource Guide at http://www.HSP70.com.
References
1. Schroda M., Vallon O., Wollman F.A. and Beck C.F. (1999) Plant Cell. 11: 1165-1178.
2. Schroda M., et al. (2001) Plant Cell. 13: 2823-2839.
3. Liu C., et al. (2005) Mol Biol Cell. 16: 1165-1177.
4. Willund F., et al. (2008) J. Biol. Chem., 283(24): 16363-16373.
Rabbit Anti-Algae HSP70B (Plant) Polyclonal
WB
,
IP
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Schroda M., et al. (2001) Plant Cell. 13: 2823-2839.
3. Liu C., et al. (2005) Mol Biol Cell. 16: 1165-1177.
4. Willund F., et al. (2008) J. Biol. Chem., 283(24): 16363-16373.
Anti-HSP70/HSC70 (Plant) Antibody
Anti-HSP70/HSC70 (Plant) Antibody__Rabbit Anti-HSP70/HSC70 (Plant) Polyclonal SBE-β-CD
Product Name
HSP70/HSC70 (Plant) Antibody
Description
Rabbit Anti-HSP70/HSC70 (Plant) Polyclonal
Species Reactivity
Arabidopsis thaliana, Barley (Hordeum vulgare L.), Fish, Lettuce (Lactuca sativa), Mammals, Plant, Radish (Raphanus sativus)
Applications
,
WB
Antibody Dilution
WB (1:1000), IP (1:1000); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen
KLH-conjugated synthetic peptide conserved in all known sequences of HSP70 and HSC70 proteins
Conjugates
Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
Lyophilized rabbit Antiserum. For reconstitution add 100 µl of sterile water.
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Rabbit antiserum
Clonality
Polyclonal
Specificity
Detects ~70kDa.
Cite This Product
Rabbit Anti- HSP70 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-312)
Certificate of Analysis
0.1 µl/ml of SPC-312 was sufficient for detection of HSP70/HSC70 in 1 mg wet plant sample extract by colorimetric immunoblot analysis using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131896
Alternative Names
HSC54 Antibody, HSC71 Antibody, HSC73 Antibody, HSP71 Antibody, HSP73 Antibody, HSPA10 Antibody, HSPA8 Antibody, LAP1 Antibody, NIP71 Antibody, HSC70 Antibody
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm
Scientific Background
HSP70 genes encode abundant heat-inducible 70-kDa HSPs (HSP70s). In most eukaryotes HSP70 genes exist as part of a multigene family. They are found in most cellular compartments of eukaryotes including nuclei, mitochondria, chloroplasts, the endoplasmic reticulum and the cytosol, as well as in bacteria. The genes show a high degree of conservation, having at least 5O% identity (1). The N-terminal two thirds of HSP70s are more conserved than the C-terminal third. HSP70 binds ATP with high affinity and possesses a weak ATPase activity which can be stimulated by binding to unfolded proteins and synthetic peptides (2). When HSC70 (constitutively expressed) present in mammalian cells was truncated, ATP binding activity was found to reside in an N-terminal fragment of 44 kDa which lacked peptide binding capacity. Polypeptide binding ability therefore resided within the C-terminal half (3). The structure of this ATP binding domain displays multiple features of nucleotide binding proteins (4). When cells are subjected to metabolic stress (e.g., heat shock) a member of the HSP 70 family, HSP 70 (HSP72), is expressed; HSP 70 is highly related to HSC70 (>90% sequence identity). Constitutively expressed HSC70 rapidly forms a stable complex with the highly inducible HSP70 in cells following heat shock. The interaction of HSC70 with HSP 70 is regulated by ATP. These two heat shock proteins move together in the cell experiencing stress. Furthermore, research on HSC70 has implicates it with a role in facilitating the recovery of centrosomal structure and function after heat shock (5). Looking for more information on HSP70? Visit our new HSP70 Scientific Resource Guide at http://www.HSP70.com.
References
1. Boorstein W.R., Ziegelhoffer T., and Craig E.A. (1993) J. Mol. Evol. 38(1): 1-17.
2. Rothman J. (1989) Cell. 59: 591-601.
3. DeLuca-Flaherty et al. (1990) Cell. 62: 875-887.
4. Bork P., Sander C., and Valencia A. (1992) Proc. Natl Acad. Sci. USA. 89: 7290-7294.
5. Brown C.L. et al. (1996) J. Biol. Chem. 271(2): 833-840.
Rabbit Anti-HSP70/HSC70 (Plant) Polyclonal
WB
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Rothman J. (1989) Cell. 59: 591-601.
3. DeLuca-Flaherty et al. (1990) Cell. 62: 875-887.
4. Bork P., Sander C., and Valencia A. (1992) Proc. Natl Acad. Sci. USA. 89: 7290-7294.
5. Brown C.L. et al. (1996) J. Biol. Chem. 271(2): 833-840.
Anti-HSP70/HSC70 (pan) Antibody
Anti-HSP70/HSC70 (pan) Antibody__Rabbit Anti-HSP70/HSC70 (pan) Polyclonal BMN-674
Product Name
HSP70/HSC70 (pan) Antibody
Description
Rabbit Anti-HSP70/HSC70 (pan) Polyclonal
Species Reactivity
Arabidopsis thaliana, Bacteria, Fish, Fungi, Lettuce (Lactuca sativa), Mammals, Plant, Radish (Raphanus sativus), X. Bacteria (Xylella fastidiosa)-9a5c strain
Applications
,
WB
Antibody Dilution
WB (1:1000), IP (1:1000); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen
KLH-conjugated synthetic peptide conserved in all known HSP70 and HSC70 proteins
Conjugates
Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
Lyophilized, PBS pH 7.4. For reconstitution add 100 µl of sterile water.
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein A purified
Clonality
Polyclonal
Specificity
Detects ~70kDa.
Cite This Product
Rabbit Anti- HSP70 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-311)
Certificate of Analysis
1 µg/ml of SPC-311 was sufficient for detection of HSP70/HSC70 in 1 mg wet plant sample extract by colorimetric immunoblot analysis using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131829
Alternative Names
HSC54 Antibody, HSC71 Antibody, HSC73 Antibody, HSP71 Antibody, HSP73 Antibody, HSPA10 Antibody, HSPA8 Antibody, LAP1 Antibody, NIP71 Antibody, HSC70 Antibody
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm
Scientific Background
HSP70 genes encode abundant heat-inducible 70-kDa HSPs (HSP70s). In most eukaryotes HSP70 genes exist as part of a multigene family. They are found in most cellular compartments of eukaryotes including nuclei, mitochondria, chloroplasts, the endoplasmic reticulum and the cytosol, as well as in bacteria. The genes show a high degree of conservation, having at least 5O% identity (1). The N-terminal two thirds of HSP70s are more conserved than the C-terminal third. HSP70 binds ATP with high affinity and possesses a weak ATPase activity which can be stimulated by binding to unfolded proteins and synthetic peptides (2). When HSC70 (constitutively expressed) present in mammalian cells was truncated, ATP binding activity was found to reside in an N-terminal fragment of 44 kDa which lacked peptide binding capacity. Polypeptide binding ability therefore resided within the C-terminal half (3). The structure of this ATP binding domain displays multiple features of nucleotide binding proteins (4). When cells are subjected to metabolic stress (e.g., heat shock) a member of the HSP 70 family, HSP 70 (HSP72), is expressed; HSP 70 is highly related to HSC70 (>90% sequence identity). Constitutively expressed HSC70 rapidly forms a stable complex with the highly inducible HSP70 in cells following heat shock. The interaction of HSC70 with HSP 70 is regulated by ATP. These two heat shock proteins move together in the cell experiencing stress. Furthermore, research on HSC70 has implicates it with a role in facilitating the recovery of centrosomal structure and function after heat shock (5). Looking for more information on HSP70? Visit our new HSP70 Scientific Resource Guide at http://www.HSP70.com.
References
1. Boorstein W.R., Ziegelhoffer T., and Craig E.A. (1993) J. Mol. Evol. 38(1): 1-17.
2. Rothman J. (1989) Cell. 59: 591-601.
3. DeLuca-Flaherty et al. (1990) Cell. 62: 875-887.
4. Bork P., Sander C., and Valencia A. (1992) Proc. Natl Acad. Sci. USA. 89: 7290-7294.
5. Brown C.L. et al. (1996) J. Biol. Chem. 271(2): 833-840.
Rabbit Anti-HSP70/HSC70 (pan) Polyclonal
WB
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Rothman J. (1989) Cell. 59: 591-601.
3. DeLuca-Flaherty et al. (1990) Cell. 62: 875-887.
4. Bork P., Sander C., and Valencia A. (1992) Proc. Natl Acad. Sci. USA. 89: 7290-7294.
5. Brown C.L. et al. (1996) J. Biol. Chem. 271(2): 833-840.
HSP65 Protein
HSP65 Protein__Mycobacterium bovis BCG Recombinant HSP65 Partial Protein BYL-720
Product Name
HSP65 Protein
Description
Mycobacterium bovis BCG Recombinant HSP65 Partial Protein
Applications
,
WB
,
SDS-PAGE
,
Functional Assay
,
ELISA
Concentration
Lot/batch specific. See included datasheet.
Conjugates
No tag
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Nature
Recombinant
Species
Mycobacterium bovis BCG
Expression System
E. coli
Amino Acid Sequence
EDPYEKIGAELVKEVAKKTDDVAGDGTTTATVLAQALVREGLRNVAAGANPLGLKRGIEKAVEKVTETLLKGAKEVETKEQIAATAAISAGDQSIGDLIAEAMDKVGNEGVITVEESNTFGLQLELTEGMRFDKGYISGYFVTDPERQEAVLEDPYILLVSSKVSTVKDLLPLXXXXXXXGKPLLIIAEDVEGEALSTLV
Purity
>90%
Protein Length
Partial
Storage Buffer
20mM Tris, 150mM NaCl, 10% glycerol
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Multi-Step Purified
Specificity
~65 kDa
Cite This Product
Mycobacterium bovis BCG Recombinant HSP65 Protein (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPR-116)
Certificate of Analysis
This product has been certified >90% pure using SDS-PAGE analysis.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131406
Alternative Names
60kDa chaperonin 2 Protein, Antigen A Protein, Cell wall protein A Protein, groEL Protein, GroEL2 Protein, GroL2 Protein, M. Tuberculosis cell wall protein A Protein, M. Tuberculosis HSP65 Protein, Protein Cpm60 2 Protein
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm
Accession Number
AAQ64501.1
Swiss Prot
Q1EHB9
Scientific Background
HSP65 isolated from Mycobacterium bovis BCG, is a member of the HSP60 family of heat shock proteins (2, 3). HSP60s are mitochondrial chaperonins that are typically held responsible for the transportation and refolding of proteins from the cytoplasm into the mitochondrial matrix. In addition to its role as a heat shock protein, HSP60 functions as a chaperonin to assist in folding linear amino acid chains into their respective three-dimensional structure. HSP60s are a ubiquitous class of HSPs that specifically promote the folding and assembly of cellular polypeptides in an ATP-dependent manner (1). Specifically, sequence comparison of HSP65 from different mycobacterium strains showed that the protein sequence of M. bovis BCG is identical to that of M. tuberculosis, and very similar to that of M. leprae, the pathogens that cause tuberculosis and tuberculoid leprosy, respectively (2,4). Mycobacterium bovis BCG HSP65 was identified as the immunodominant antigen during mycobacterial diseases and vaccination. It is also believed to be the antigen that induces autoimmune disease, such as adjuvant arthritis in rats (5, 6).
References
1. Koll H., et al. (1992) Cell. 68: 1163-1175.
2. Thole J.E.R., et al. (1985) Infect. Immuno. 50: 800-806.
3. Thole J.E.R., et al., (1987) Infect. Immuno. 55: 1466-1475.
4. Shinnick T.M. Sweetser D., Thole J., van Embden J. and Young R.A. (1987) Infect. Immuno. 55: 1932-1935.
5. Van Eden W., et al. (1988) Nature 331: 171-178.
6. Cobelens P.M., et al. (2002) Rheumatology 41: 775-779.
Mycobacterium bovis BCG Recombinant HSP65 Partial Protein
WB
,
SDS-PAGE
,
Functional Assay
,
ELISA
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Thole J.E.R., et al. (1985) Infect. Immuno. 50: 800-806.
3. Thole J.E.R., et al., (1987) Infect. Immuno. 55: 1466-1475.
4. Shinnick T.M. Sweetser D., Thole J., van Embden J. and Young R.A. (1987) Infect. Immuno. 55: 1932-1935.
5. Van Eden W., et al. (1988) Nature 331: 171-178.
6. Cobelens P.M., et al. (2002) Rheumatology 41: 775-779.
Anti-HSP47 Antibody 1C4-1A6
Anti-HSP47 Antibody
1C4-1A6__Mouse Anti-Human HSP47 Monoclonal IgG1 Kappa PT-2386
Product Name
HSP47 Antibody
Description
Mouse Anti-Human HSP47 Monoclonal IgG1 Kappa
Species Reactivity
Human
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Human
Immunogen
Human HSP47, full length
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
1C4-1A6
Isotype
IgG1 Kappa
Specificity
Detects 47kDa.
Cite This Product
Mouse Anti-Human HSP47 Monoclonal, Clone 1C4-1A6 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-203)
Certificate of Analysis
1 µg/ml of SMC-203 was sufficient for detection of HSP47 in 20 µg of heat shocked HeLa cell lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131270
Alternative Names
SerpinH1 Antibody, Colligin Antibody, Gp46 Antibody, serine proteinase inhibitor Antibody, cysteine proteinase inhibitor Antibody, collagen binding protein Antibody
Research Areas
Cancer, Heat Shock
Cellular Localization
Endoplasmic Reticulum, Endoplasmic reticulum lumen
Accession Number
NP_001193943
Gene ID
871
Swiss Prot
P50454.2
Scientific Background
HSP47 is a chaperone protein, member of the superfamily of serine proteinase inhibitors. Also known as SERPINH1, a serine proteinase inhibitor. It is a stress protein that resides in the endoplasmic reticulum, has an active role on the intracellular process of folding, assembly and secretion of pro-collagens. Recent studies have shown the association of on an increased expression of HSP47 around fibrotic lesions (1).
The identification of a novel biomarker on cell therapies aimed to reduce the progression of fibrotic diseases, could be used potentially as a universal marker, since HSP47 binds a single substrate (2). Type I collagen is fundamental during the healing process after a myocardial infarction. It is critical in the position of collagen-produced cells and the assembly of collagen fibrils (3).
References
1. Razzaque MS., Taquchi T., (1999) Histol Histopathol. 14 (4): 1999-212.
2. Taguchi T., et al. (2011) Acta Histochem Cytochem. 44(2):35-41.
3. Nong Z., et al. (2011) Am J Pathol. 197(5): 2189-96.
Mouse Anti-Human HSP47 Monoclonal IgG1 Kappa
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
The identification of a novel biomarker on cell therapies aimed to reduce the progression of fibrotic diseases, could be used potentially as a universal marker, since HSP47 binds a single substrate (2). Type I collagen is fundamental during the healing process after a myocardial infarction. It is critical in the position of collagen-produced cells and the assembly of collagen fibrils (3).
2. Taguchi T., et al. (2011) Acta Histochem Cytochem. 44(2):35-41.
3. Nong Z., et al. (2011) Am J Pathol. 197(5): 2189-96.
Anti-HSP40, YDJ1 Antibody 1G10.H8
Anti-HSP40, YDJ1 Antibody
1G10.H8__Mouse Anti-Yeast HSP40, YDJ1 Monoclonal IgG1 Kappa ARS-854
Product Name
HSP40, YDJ1 Antibody
Description
Mouse Anti-Yeast HSP40, YDJ1 Monoclonal IgG1 Kappa
Species Reactivity
Yeast
Applications
,
WB
,
IP
,
ELISA
Antibody Dilution
WB (1:2000); optimal dilutions for assays should be determined by the user.
Host Species
Mouse
Immunogen Species
Yeast
Immunogen
Full length protein yeast HSP40 (YDJ1)
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein G Purified
Clonality
Monoclonal
Clone Number
1G10.H8
Isotype
IgG1 Kappa
Specificity
Detects ~40kDa. Yeast specific product. Does not cross react with Human, Mouse or Rat.
Cite This Product
Mouse Anti-Yeast HSP40 Monoclonal, Clone 1G10.H8 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-150)
Certificate of Analysis
0.5 µg/ml of SMC-150 was sufficient for detection of 50 ng YDJ1 by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131254
Alternative Names
DNAJA2 Antibody, CPR3 Antibody, HIRIP4 Antibody, DNAJ Antibody, DNJ3 Antibody, DJ3 Antibody, RDJ2 Antibody, HIRa interacting protein4 Antibody
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm, Nucleus
Accession Number
NP_014335.1
Gene ID
855661
Swiss Prot
P25491
Scientific Background
Human HSP40/DnaJ proteins comprise a large protein family, members of which feature the J domain (named after the bacterial DnaJ protein) (1). The J-domain spans the first 75 N-terminal amino acids and is separated from the C-terminal by a glycine/phenylalanine-rich domain (2). There are two main types of HSP40; type 1 DNAJ proteins including HDJ2 and yeast YdjI; type II includes yeast Sis1 and human Hdj1. Whereas type I possesses a zinc finger domain which helps in the function of protein folding. (3, 4), type II does not.
Members of the HSP40/DnaJ family play diverse roles in many cellular processes, such as folding, translocation, degradation and assembly of multi-protein complexes. HSP40 stimulates the ATPase activity of HSP70 which in turn causes conformational changes of the unfolded proteins (5, 6). The HSP40-HSP70-unfolded protein complex further binds to co-chaperones Hip, Hop and HSP90 which leads to protein folding, or components of protein degradation machinery CHIP and BAG-1 (7).
References
1. Cheetham M.E. and Caplan A.J. (1998) Cell Stress Chaperones 3: 28–36.
2. Fan C.Y., et al. (2003) Cell Stress Chaperones 8: 309–316.
3. Terda K., et al. (1997) J Cell Biol. 139: 1089-1095.
4. Lu Z. and Cyr D.M. (1998) J Biol Chem. 273: 27824-27830.
5. Liberek K. et al. (1991) Proc. Natl. Acad. Sci. USA 88: 2874–2878.
6. Cyr D.M., et al. (1992) J Biol Chem. 267: 20927–20931.
7. Höhfeld J., et al. (2001) EMBO Rep. 2: 885–890.
Mouse Anti-Yeast HSP40, YDJ1 Monoclonal IgG1 Kappa
WB
,
IP
,
ELISA
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Members of the HSP40/DnaJ family play diverse roles in many cellular processes, such as folding, translocation, degradation and assembly of multi-protein complexes. HSP40 stimulates the ATPase activity of HSP70 which in turn causes conformational changes of the unfolded proteins (5, 6). The HSP40-HSP70-unfolded protein complex further binds to co-chaperones Hip, Hop and HSP90 which leads to protein folding, or components of protein degradation machinery CHIP and BAG-1 (7).
2. Fan C.Y., et al. (2003) Cell Stress Chaperones 8: 309–316.
3. Terda K., et al. (1997) J Cell Biol. 139: 1089-1095.
4. Lu Z. and Cyr D.M. (1998) J Biol Chem. 273: 27824-27830.
5. Liberek K. et al. (1991) Proc. Natl. Acad. Sci. USA 88: 2874–2878.
6. Cyr D.M., et al. (1992) J Biol Chem. 267: 20927–20931.
7. Höhfeld J., et al. (2001) EMBO Rep. 2: 885–890.
Anti-HSP40 Antibody
Anti-HSP40 Antibody__Rabbit Anti-P. Falciparum HSP40 Polyclonal PKC413
Product Name
HSP40 Antibody
Description
Rabbit Anti-P. Falciparum HSP40 Polyclonal
Species Reactivity
Plasmodium falciparum
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:2000), ICC/IF (1:50); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
P. Falciparum
Immunogen
C-terminal peptide of Pf11_0513 conjugated to KLH
Concentration
1.8 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH 7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Protein A purified
Clonality
Polyclonal
Specificity
Detects ~ 62kDa. Specific to P. Falciparum and does not cross-react to any protein from Human erythrocytes.
Cite This Product
Rabbit Anti-P. falciparum HSP40 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-184)
Certificate of Analysis
0.9 µg/ml of SPC-184 was sufficient for detection of Pf11_0513 in 20 µg of P. falciparum lysate by colorimetric immunoblot analysis using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19131227
Alternative Names
DNAJ1 Antibody, NDAJB1 Antibody, HDJ1 Antibody, HSP40 Antibody, HSPF1 Antibody, DnaJ homolog subfamily B member 1 Antibody, Dna J protein homolog 1 Antibody, Heat shock 40 kDa protein 1 Antibody, HSP40 Antibody, heat shock protein 40 Antibody, Human DnaJ protein 1 Antibody, hDj-1 Antibody
Research Areas
Cancer, Heat Shock
Cellular Localization
Cytoplasm, Nucleus
Accession Number
XP_001348169.2
Gene ID
811045
Swiss Prot
Q8IHM7
Scientific Background
DnaJ/HSP40 proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, HSP70s. Because the ATP hydrolysis is essential for the activity of HSP70s, DnaJ/HSP40 proteins actually determine the activity of HSP70s by stabilizing their interaction with substrate proteins. DnaJ/HSP40 proteins all contain the J domain through which they bind to HSP70s.
HSP40, also known as HDJ1 (1), is a basic mammalian 40kDa heat shock protein which is not only homologous to the bacterial heat shock protein (DnaJ), but also yeast DnaJ-related proteins such as SCJ1, Sec63/Npl1, YDJ1 and SIS1 (2-6). HSP 40 is inducible by stress including heat after which is moves from the cytoplasm to the nucleus and nucleoli; an intracellular pattern similar to HSC70/HSP70, the mammalian homologues of the bacterial heat shock protein, DnaK (3). PF11_0513 belongs to the HSP40 family of chaperones. This protein has a Plasmodium export element (PEXEL). It is exported out of the parasite into the infected erythrocytic compartment.
References
1. Ohtsuka K. (1993) Biochem. Biophys. Res. Commun. 197: 235-240.
2. Melville M.W., et al. (1997) PNAS USA. 94: 97-102.
3. Hattori H., Let al. (1992) Cell Structure and Function. 17: 77-86.
4. Ohtsuka K. Masuda A., Nakai A., and Nagata K. (1990) Biochem. Biophys. Res. Commun. 166: 642-647.
5. Bardwell J.C.A., et al. (1986) J. Biol. Chem. 261: 1782-1785.
6. Ohku M., Tamura F., Nishimura S., and Uchida H. (1986) J. Biol. Chem. 261: 1778-1781.
Rabbit Anti-P. Falciparum HSP40 Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
HSP40, also known as HDJ1 (1), is a basic mammalian 40kDa heat shock protein which is not only homologous to the bacterial heat shock protein (DnaJ), but also yeast DnaJ-related proteins such as SCJ1, Sec63/Npl1, YDJ1 and SIS1 (2-6). HSP 40 is inducible by stress including heat after which is moves from the cytoplasm to the nucleus and nucleoli; an intracellular pattern similar to HSC70/HSP70, the mammalian homologues of the bacterial heat shock protein, DnaK (3). PF11_0513 belongs to the HSP40 family of chaperones. This protein has a Plasmodium export element (PEXEL). It is exported out of the parasite into the infected erythrocytic compartment.
2. Melville M.W., et al. (1997) PNAS USA. 94: 97-102.
3. Hattori H., Let al. (1992) Cell Structure and Function. 17: 77-86.
4. Ohtsuka K. Masuda A., Nakai A., and Nagata K. (1990) Biochem. Biophys. Res. Commun. 166: 642-647.
5. Bardwell J.C.A., et al. (1986) J. Biol. Chem. 261: 1782-1785.
6. Ohku M., Tamura F., Nishimura S., and Uchida H. (1986) J. Biol. Chem. 261: 1778-1781.