Anti-ATG9B Antibody__Rabbit Anti-Human ATG9B Polyclonal FK866
Anti-ATG7 Antibody
Anti-ATG7 Antibody__Rabbit Anti-Human ATG7 Polyclonal ST 2825
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 77.9 kDa.
Cite This Product
Rabbit Anti-Human ATG7 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-610)
Certificate of Analysis
A 1:1000 dilution of SPC-610 was sufficient for detection of ATG7 in 15 µg of human HeLa cell lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115660
Alternative Names
Autophagy 7S. cerevisiae, homolog of Antibody, APG7 like Antibody, ATG7_HUMAN Antibody, hAGP7 Antibody, Ubiquitin-like modifier-activating enzyme ATG7 Antibody, Autophagy related protein 7 Antibody, Autophagy-related protein 7 Antibody, GSA 7 Antibody, APG7, S. cerevisiae, homolog of Antibody, Ubiquitin-activating enzyme E1-like protein Antibody, Autophagy-related 7 (yeast) Antibody, APG7 autophagy 7 like Antibody, 1810013K23Rik Antibody, APG7 autophagy 7-like (S. cerevisiae) Antibody, ATG12-activating enzyme E1 ATG7 Antibody, ATG7 autophagy related 7 homolog Antibody, Atg7l Antibody, Ubiquitin activating enzyme E1 like protein Antibody, Apg 7 Antibody, APG7L Antibody, DKFZp434N0735 Antibody, ATG 7 Antibody, APG7-like Antibody, GSA7 Antibody, ATG7 autophagy related 7 homolog (S. cerevisiae) Antibody, ATG7 Antibody
Research Areas
Cancer, Apoptosis, Autophagy, Cardiovascular System, Heart
Cellular Localization
Cytoplasm, Preautophagosomal structure
Accession Number
NP_001129503.2
Gene ID
10533
Swiss Prot
O95352
Scientific Background
ATG7 in conjuction with ATG10, mediates the formation of the autophagosome when ATG12 is covalently bound to ATG5 and targets to autophagosome vesicles. It also activates ATG8, and is crucial for amino acid supply in neonates.
References
1. Mizushima N., et al. (1998) J Biol Chem. 273: 33889-92.
2. Mizushima N., et al. (1998) Nature. 395: 395-8.
3. Suzuki K., et al. (2001) EMBO J. 20: 5971-81.
4. Tanida I., et al. (1999) Mol Biol Cell. 10: 1367-79.
5. Shintani T., et al. (1999) EMBO J. 18: 5234-41.
2. Mizushima N., et al. (1998) Nature. 395: 395-8.
3. Suzuki K., et al. (2001) EMBO J. 20: 5971-81.
4. Tanida I., et al. (1999) Mol Biol Cell. 10: 1367-79.
5. Shintani T., et al. (1999) EMBO J. 18: 5234-41.
Anti-ATG7 Antibody
Anti-ATG7 Antibody__Rabbit Anti-Human ATG7 Polyclonal Teprenone
Product Name
ATG7 Antibody
Description
Rabbit Anti-Human ATG7 Polyclonal
Species Reactivity
Human, Mouse, Rat
Applications
,
WB
Antibody Dilution
WB (1:1000); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the C-terminal of Human ATG7
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 77.9 kDa.
Cite This Product
Rabbit Anti-Human ATG7 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-609)
Certificate of Analysis
A 1:1000 dilution of SPC-609 was sufficient for detection of ATG7 in 15 µg of human HeLa cell lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115503
Alternative Names
Autophagy 7S. cerevisiae, homolog of Antibody, APG7 like Antibody, ATG7_HUMAN Antibody, hAGP7 Antibody, Ubiquitin-like modifier-activating enzyme ATG7 Antibody, Autophagy related protein 7 Antibody, Autophagy-related protein 7 Antibody, GSA 7 Antibody, APG7, S. cerevisiae, homolog of Antibody, Ubiquitin-activating enzyme E1-like protein Antibody, Autophagy-related 7 (yeast) Antibody, APG7 autophagy 7 like Antibody, 1810013K23Rik Antibody, APG7 autophagy 7-like (S. cerevisiae) Antibody, ATG12-activating enzyme E1 ATG7 Antibody, ATG7 autophagy related 7 homolog Antibody, Atg7l Antibody, Ubiquitin activating enzyme E1 like protein Antibody, Apg 7 Antibody, APG7L Antibody, DKFZp434N0735 Antibody, ATG 7 Antibody, APG7-like Antibody, GSA7 Antibody, ATG7 autophagy related 7 homolog (S. cerevisiae) Antibody, ATG7 Antibody
Research Areas
Cancer, Apoptosis, Autophagy, Cardiovascular System, Heart
Cellular Localization
Cytoplasm, Preautophagosomal structure
Accession Number
NP_001129503.2
Gene ID
10533
Swiss Prot
O95352
Scientific Background
ATG7 in conjuction with ATG10, mediates the formation of the autophagosome when ATG12 is covalently bound to ATG5 and targets to autophagosome vesicles. It also activates ATG8, and is crucial for amino acid supply in neonates.
References
1. Mizushima N., et al. (1998) J Biol Chem. 273: 33889-92.
2. Mizushima N., et al. (1998) Nature. 395: 395-8.
3. Suzuki K., et al. (2001) EMBO J. 20: 5971-81.
4. Tanida I., et al. (1999) Mol Biol Cell. 10: 1367-79.
5. Shintani T., et al. (1999) EMBO J. 18: 5234-41.
Rabbit Anti-Human ATG7 Polyclonal
WB
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Mizushima N., et al. (1998) Nature. 395: 395-8.
3. Suzuki K., et al. (2001) EMBO J. 20: 5971-81.
4. Tanida I., et al. (1999) Mol Biol Cell. 10: 1367-79.
5. Shintani T., et al. (1999) EMBO J. 18: 5234-41.
Anti-ATG5 Antibody
Anti-ATG5 Antibody__Rabbit Anti-Human ATG5 Polyclonal Integrin Antagonist 1 (hydrochloride)
Product Name
ATG5 Antibody
Description
Rabbit Anti-Human ATG5 Polyclonal
Species Reactivity
Human
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the N-terminal of human ATG5
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Predicted molecular weight at ~32.4kDa. Observed molecular weights at ~48-60kDa based on ATG12-ATG5 heterodimer.
Cite This Product
Rabbit Anti-Human ATG5 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-612)
Certificate of Analysis
A 1:1000 dilution of SPC-612 was sufficient for detection of ATG5 on HeLa cell lysates using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115484
Alternative Names
APG5-like Antibody, ASP Antibody, hAPG5 Antibody
Research Areas
Cancer, Apoptosis, Autophagy
Cellular Localization
Cytoplasm
Accession Number
NP_001273035.1
Gene ID
9474
Swiss Prot
Q9H1Y0
Scientific Background
ATG5 is required for autophagy. It conjugates to ATG12 and associates with isolation membrane to form autophagosomes. The conjugate detaches from the membrane immediately before or after autophagosome formation is completed (1). Conjugation to ATG12 is essential for autophagy, but is not required for association with isolation membrane. ATG5 also plays an important role in the apoptotic process. Its expression is a relatively late event in the apoptotic process, occurring downstream of caspase activity. ATG5 is activated by ATG7 and forms a complex with ATG12 and ATG16L1. This complex is necessary for LC3-1 conjugation to PE to form LC3-II (2).
References
1. Pyo J.O., et al. (2005) J Biol Chem. 280(21): 20722-20729.
2. Mizushima N., et al. (2003) Mol Biol Cell. 15(3): 1101-1111.
Rabbit Anti-Human ATG5 Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Mizushima N., et al. (2003) Mol Biol Cell. 15(3): 1101-1111.
Anti-ATG5 Antibody
Anti-ATG5 Antibody__Rabbit Anti-Human ATG5 Polyclonal Taltobulin
Product Name
ATG5 Antibody
Description
Rabbit Anti-Human ATG5 Polyclonal
Species Reactivity
Human
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the mid-protein of human ATG5
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Predicted molecular weight at ~32.4kDa. Observed molecular weights at ~48-60kDa based on ATG12-ATG5 heterodimer.
Cite This Product
Rabbit Anti-Human ATG5 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-611)
Certificate of Analysis
A 1:1000 dilution of SPC-611 was sufficient for detection of ATG5 on HeLa cell lysates using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115403
Alternative Names
APG5-like Antibody, ASP Antibody, hAPG5 Antibody
Research Areas
Cancer, Apoptosis, Autophagy
Cellular Localization
Cytoplasm
Accession Number
NP_001273035.1
Gene ID
9474
Swiss Prot
Q9H1Y0
Scientific Background
ATG5 is required for autophagy. It conjugates to ATG12 and associates with isolation membrane to form autophagosomes. The conjugate detaches from the membrane immediately before or after autophagosome formation is completed (1). Conjugation to ATG12 is essential for autophagy, but is not required for association with isolation membrane. ATG5 also plays an important role in the apoptotic process. Its expression is a relatively late event in the apoptotic process, occurring downstream of caspase activity. ATG5 is activated by ATG7 and forms a complex with ATG12 and ATG16L1. This complex is necessary for LC3-1 conjugation to PE to form LC3-II (2).
References
1. Pyo J.O., et al. (2005) J Biol Chem. 280(21): 20722-20729.
2. Mizushima N., et al. (2003) Mol Biol Cell. 15(3): 1101-1111.
Rabbit Anti-Human ATG5 Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Mizushima N., et al. (2003) Mol Biol Cell. 15(3): 1101-1111.
Anti-ATG4D Antibody
Anti-ATG4D Antibody__Rabbit Anti-Human ATG4D Polyclonal CFI-400945 (free base)
Product Name
ATG4D Antibody
Description
Rabbit Anti-Human ATG4D Polyclonal
Species Reactivity
Human
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the N-terminal of Human ATG4D (aa. 98-108)
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects ~53 kDa.
Cite This Product
Rabbit Anti-Human ATG4D Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-635)
Certificate of Analysis
A 1:1000 dilution of SPC-635 was sufficient for detection of ATG4D in 15 µg of Human HeLa Cell Lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115394
Alternative Names
Autophagin-4 Antibody, APG4D Antibody, ATG4D Antibody, Cysteine protease ATG4D Antibody, AUTL4 Antibody, Autophagy-related cysteine endopeptidase 4 Antibody, EC:3.4.22.- Antibody, AUT-like 4 cysteine endopeptidase Antibody, Autophagy-related protein 4 homolog D Antibody,
Research Areas
Cancer, Autophagy, Cardiovascular System, Heart
Cellular Localization
Cytoplasm
Accession Number
NP_001268433.1
Gene ID
84971
Swiss Prot
Q86TL0
Scientific Background
ATG4D, Auotphagy related 4D, cysteine peptidases, belong to the autophagy-related protein 4 family of C54 endopeptidases. Members of this family play a role in the biogenesis of autophagosomes (1). Cysteine protease ATG4D: Cysteine protease required for the cytoplasm to vacuole transport (Cvt) and autophagy. Cleaves the C-terminal amino acid of ATG8 family proteins MAP1LC3 and GABARAPL2, to reveal a C-terminal glycine. Exposure of the glycine at the C-terminus is essential for ATG8 proteins conjugation to phosphatidylethanolamine (PE) and insertion to membranes, which is necessary for autophagy. Has also an activity of delipidating enzyme for the PE-conjugated forms (2).
References
1. "Entrez Gene: Autophagy related 4D, cysteine peptidase". 2. Li M., et al. (2011) J Biol Chem. 286: 7327-7338.
Rabbit Anti-Human ATG4D Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-ATG4D Antibody
Anti-ATG4D Antibody__Rabbit Anti-Human ATG4D Polyclonal Grapiprant
Product Name
ATG4D Antibody
Description
Rabbit Anti-Human ATG4D Polyclonal
Species Reactivity
Human, Mouse
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the C-terminal of human ATG4D
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects ~52kDa.
Cite This Product
Rabbit Anti-Human ATG4D Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-634)
Certificate of Analysis
A 1:1000 dilution of SPC-634 was sufficient for detection of ATG4D on HeLa cell lysates using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115371
Alternative Names
APG4 autophagy 4 homolog D Antibody, APG4 D Antibody, ATG4 autophagy related 4 homolog D Antibody, AUTL4 Antibody, Cysteine protease ATG4D Antibody, MGC31226 Antibody
Research Areas
Cancer, Autophagy, Cardiovascular System, Heart
Cellular Localization
Cytoplasm
Accession Number
NP_001268433.1
Gene ID
84971
Swiss Prot
Q86TL0
Scientific Background
ATG4D, Auotphagy related 4D, cysteine peptidases, belong to the autophagy-related protein 4 family of C54 endopeptidases. Members of this family play a role in the biogenesis of autophagosomes (1). Cysteine protease ATG4D: Cysteine protease required for the cytoplasm to vacuole transport (Cvt) and autophagy. Cleaves the C-terminal amino acid of ATG8 family proteins MAP1LC3 and GABARAPL2, to reveal a C-terminal glycine. Exposure of the glycine at the C-terminus is essential for ATG8 proteins conjugation to phosphatidylethanolamine (PE) and insertion to membranes, which is necessary for autophagy. Has also an activity of delipidating enzyme for the PE-conjugated forms (2).
References
1. "Entrez Gene: Autophagy related 4D, cysteine peptidase".
2. Li M., et al. (2011) J Biol Chem. 286: 7327-7338.
Rabbit Anti-Human ATG4D Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Li M., et al. (2011) J Biol Chem. 286: 7327-7338.
Anti-ATG4C Antibody
Anti-ATG4C Antibody__Rabbit Anti-Human ATG4C Polyclonal Lu AE58054 (Hydrochloride)
Product Name
ATG4C Antibody
Description
Rabbit Anti-Human ATG4C Polyclonal
Species Reactivity
Human
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the C-terminal of Human ATG4C (aa. 296-306)
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects ~50 kDa.
Cite This Product
Rabbit Anti-Human ATG4C Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-633)
Certificate of Analysis
A 1:1000 dilution of SPC-633 was sufficient for detection of ATG4C in 15 µg of Human HeLa Cell Lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115315
Alternative Names
AUT like 1cysteine endopeptidase (S. cerevisiae) Antibody, APG4 autophagy 4 homolog C Antibody, Cysteine protease ATG4C Antibody, APG4-C Antibody, Autophagy-related cysteine endopeptidase 3 Antibody, EC:3.4.22.- Antibody, ATG 4C Antibody, AUT like 1, cysteine endopeptidase Antibody, EC 3.4.22 Antibody, APG4C Antibody, Autophagin-3 Antibody, OTTHUMP00000010715 Antibody, AUTL3 Antibody, APG4 autophagy 4 homolog C (S. cerevisiae) Antibody, Autophagy related cysteine endopeptidase 3 Antibody, ATG4C Antibody, Autophagin 3 Antibody, ATG4 autophagy related 4 homolog C Antibody, AUT like 3 cysteine endopeptidase Antibody, AUTL1 Antibody, ATG4C_HUMAN Antibody, AUT (S. cerevisiae) like 1, cysteine endopeptidase Antibody, Autophagy-related protein 4 homolog C Antibody, Autophagy related protein 4 homolog C Antibody, ATG4 autophagy related 4 homolog C (S. cerevisiae) Antibody, Autophagy related 4C cysteine peptidase Antibody, Atg4c Antibody, APG4 C Antibody, FLJ14867 Antibody, AUT-like 3 cysteine endopeptidase Antibody,
Research Areas
Cancer, Autophagy, Cardiovascular System
Cellular Localization
Cytoplasm
Accession Number
NP_116241.2
Gene ID
84938
Swiss Prot
Q96DT6
Rabbit Anti-Human ATG4C Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-ATG4C Antibody
Anti-ATG4C Antibody__Rabbit Anti-Human ATG4C Polyclonal Sumanirole (maleate)
Product Name
ATG4C Antibody
Description
Rabbit Anti-Human ATG4C Polyclonal
Species Reactivity
Human, Mouse, Rat
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the N-terminal of human ATG4C
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Predicted molecular weight at ~52.5kDa. Observed molecular weights at ~45-60kDa.
Cite This Product
Rabbit Anti-Human ATG4C Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-632)
Certificate of Analysis
A 1:1000 dilution of SPC-632 was sufficient for detection of ATG4C on HeLa cell lysates using Goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115237
Alternative Names
APG4 autophagy 4 homolog C Antibody, APG4 C Antibody, Atg4c Antibody, AUTL1 Antibody, Autophagin 3 Antibody, Cysteine protease ATG4C Antibody
Research Areas
Cancer, Autophagy, Cardiovascular System
Cellular Localization
Cytoplasm
Accession Number
NP_116241.2
Gene ID
84938
Swiss Prot
Q96DT6
Scientific Background
ATG4C belongs to the peptidase C54 family. It is a cysteine protease required for the cytoplasm to vacuole transport (Cvt) and autophagy. Is not essential for autophagy development under normal conditions but is required for a proper autophagic response under stressful conditions such as prolonged starvation (By similarity). Cleaves the C-terminal amino acid of ATG8 family proteins MAP1LC3 and GABARAPL2, to reveal a C-terminal glycine. Exposure of the glycine at the C-terminus is essential for ATG8 proteins conjugation to phosphatidylethanolamine (PE) and insertion to membranes, which is necessary for autophagy. It also has an activity of delipidating enzyme for the PE-conjugated forms (1).
References
1. Li M., et al. (2011) J Biol Chem. 286: 7327-7338.
Rabbit Anti-Human ATG4C Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-ATG4B Antibody
Anti-ATG4B Antibody__Rabbit Anti-Human ATG4B Polyclonal Z-VAD-FMK
Product Name
ATG4B Antibody
Description
Rabbit Anti-Human ATG4B Polyclonal
Species Reactivity
Human, Mouse
Applications
,
WB
,
ICC/IF
Antibody Dilution
WB (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide from the N-terminal of Human ATG4B (aa. 62-73)
Concentration
1 mg/ml
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects ~50 kDa.
Cite This Product
Rabbit Anti-Human ATG4B Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-631)
Certificate of Analysis
A 1:1000 dilution of SPC-631 was sufficient for detection of ATG4B in 15 µg of Human HeLa Cell Lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19115211
Alternative Names
MGC1353 Antibody, Autophagy-related cysteine endopeptidase 1 Antibody, ATG4B Antibody, hAPG4B Antibody, AUT-like 1 cysteine endopeptidase Antibody, Cysteine protease ATG4B Antibody, Autophagy-related protein 4 homolog B Antibody, Autophagin-1 Antibody, EC:3.4.22.- Antibody, ATG4B_HUMAN Antibody, APG4B Antibody, APG4 autophagy 4 homolog B Antibody, AUTL1 Antibody, KIAA0943 Antibody, Autophagy related cysteine endopeptidase 1 Antibody, Autophagin 1 Antibody, ATG4 autophagy related 4 homolog B (S. cerevisiae) Antibody, AUT like 1 cysteine endopeptidase Antibody, Autophagy related protein 4 homolog B Antibody,
Research Areas
Cancer, Autophagy, Cardiovascular System, Cell Signaling, Heart
Cellular Localization
Cytoplasm
Accession Number
NP_037457.3
Gene ID
23192
Swiss Prot
Q9Y4P1
Scientific Background
Autophagy related 4B, cysteine peptidase (ATG4B or APG4B) is a C-54 cysteine protease that also belongs to the family of autophagin poteins. Specifically it cleaves LC3, and mutations can be associated with strong inhibition of autophagosome formation.
References
1. Kabeya Y., et al. (2004) J Cell Sci. 117: 2805-2812.
2. Tanida I., et al. (2004) J Biol Chem. 279: 36268-36276.
3. Hemelaar J., et al. (2003) J Biol Chem. 278: 51841-51850.
Rabbit Anti-Human ATG4B Polyclonal
WB
,
ICC/IF
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
2. Tanida I., et al. (2004) J Biol Chem. 279: 36268-36276.
3. Hemelaar J., et al. (2003) J Biol Chem. 278: 51841-51850.