Anti-FAK Antibody (pTyr577)__Rabbit Anti-Human FAK (pTyr577) Polyclonal Iopamidol
EX-527
EX-527__SIRT1 inhibitor AZD-8055
Product Name
EX-527
Description
SIRT1 inhibitor
Purity
>98% (TLC); NMR (Conforms)
CAS No.
49843-98-3
Molecular Formula
C13H13ClN2O
Molecular Weight
248.7
Storage Temperature
-20ºC
Shipping Temperature
Shipped Ambient
Product Type
Inhibitor
Solubility
Soluble in 18 mg/ml DMSO or 10 mg/ml Ethanol
Source
Synthetic
Appearance
Light Yellow Solid
SMILES
C1CC(C2=C(C1)C3=C(N2)C=CC(=C3)Cl)C(=O)N
InChI
InChI=1S/C13H13ClN2O/c14-7-4-5-11-10(6-7)8-2-1-3-9(13(15)17)12(8)16-11/h4-6,9,16H,1-3H2,(H2,15,17)
InChIKey
FUZYTVDVLBBXDL-UHFFFAOYSA-N
Safety Phrases
Classification: Harmful- May be harmful if inhaled, swallowed, or absorbed through skin.
Safety Phrases:
S22 – Do not breathe dust
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
S24/25- Avoid contact with skin and eyes
Hazard Statements:
H301 – Toxic if swallowed
H319 – Causes serious eye irritation
Precautionary Statements:
P301 + P310 – If swallowed: Immediately call a POSION Center
P305 + P351 + P338: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
Cite This Product
EX-527 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-353)
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123978
Alternative Names
6-Chloro-2,3,4,9-tetrahydro-1Hcarbazole-1-carboxamide (racemic)
Research Areas
Cell Signaling, Epigenetics
PubChem ID
5113032
Scientific Background
Selective SIRT1 inhibitor (IC50=98 nM). Does not inhibit other HDACs or SIRT family members. Increases p53 acetylation following DNA damage. Cell permeable.
References
1. Solomon J.M., et al., (2006) Mol. Cell. Biol. 26: 28.
2. Anderson J.L., et al., (2011) Mol.Cell 43: 834.
SIRT1 inhibitor
Safety Phrases:
S22 – Do not breathe dust
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
S24/25- Avoid contact with skin and eyes
Hazard Statements:
H301 – Toxic if swallowed
H319 – Causes serious eye irritation
Precautionary Statements:
P301 + P310 – If swallowed: Immediately call a POSION Center
P305 + P351 + P338: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
2. Anderson J.L., et al., (2011) Mol.Cell 43: 834.
Etoposide
Etoposide__Topoisomerase II inhibitor Regorafenib
Product Name
Etoposide
Description
Topoisomerase II inhibitor
Purity
>98%
CAS No.
33419-42-0
Molecular Formula
C29H32O13
Molecular Weight
588.56
Storage Temperature
-20ºC
Shipping Temperature
Shipped Ambient
Product Type
Inducer
Solubility
Soluble to 100 mM in DMSO
Source
Synthetic
Appearance
White solid
SMILES
CC@@H1OCC@@H2C@@H(O1)C@@H(email protected(C@@H(O2)Oemail protected3email protected4COC(=O)C@@H4C@@H(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O
InChI
InChI=1S/C29H32O13/c1-11-36-9-20-27(40-11)24(31)25(32)29(41-20)42-26-14-7-17-16(38-10-39-17)6-13(14)21(22-15(26)8-37-28(22)33)12-4-18(34-2)23(30)1
InChIKey
VJJPUSNTGOMMGY-MRAJQDPKSA-N
Safety Phrases
Classification: Toxic. May be harmful or fatal if inhaled, swallowed or absorbed through skin.
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
S53 – Avoid exposure – obtain special instruction before use
Risk Phrases:
R20/21/22 – Harmful by inhilation, in contact with skin and if swallowed
R45 – May cause cancer
R62 – Possible risk of impaired fertility
R68 – Possible risk of irreversible effects
Hazard Phrases:
H302-H350
Precautionary Phrases:
P201-P308 + P313
Cite This Product
Etoposide (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-244)
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123941
Alternative Names
(5S,5aR,8aR,9R)-9-(4-Hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,6,8,8a,9-hexahydrofuro3',4':6,7naphtho2,3-d1,3dioxol-5-yl 4,6-O-(1R)-ethylidene-β-D-glucopyranoside
Research Areas
Cancer, Apoptosis
PubChem ID
36462
Scientific Background
Etoposide inhibits the enzyme topoisomerase II, which unwinds DNA, and be doing so causes the DNA strand to break. Cancer cells are then less likely to be able to repair this damage (1).
References
1. Gordaliza M., et al. (2004) Toxicon. 44(4): 441-459.
Topoisomerase II inhibitor
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
S53 – Avoid exposure – obtain special instruction before use
Risk Phrases:
R20/21/22 – Harmful by inhilation, in contact with skin and if swallowed
R45 – May cause cancer
R62 – Possible risk of impaired fertility
R68 – Possible risk of irreversible effects
Hazard Phrases:
H302-H350
Precautionary Phrases:
P201-P308 + P313
Anti-ESR1 Antibody
Anti-ESR1 Antibody__Rabbit Anti-Human ESR1 Polyclonal LXR-623
Storage Buffer
PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects ~66 kDa.
Cite This Product
Rabbit Anti-Human ESR1 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-708)
Certificate of Analysis
A 1:1000 dilution of SPC-708 was sufficient for detection of ESR1 in 15 µg of human HeLa cell lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123923
Alternative Names
Estrogen receptor alpha Antibody, ER alpha Antibody, ER-alpha Antibody, Estrogen receptor alpha delta 3*,4,5,6,7*/819 2 isoform Antibody, NR3A1 Antibody, Nuclear receptor subfamily 3 group A member 1 Antibody, Estrogen receptor alpha delta 4*,5,6,7*/654 isoform Antibody, ESR1_HUMAN Antibody, ESTRR Antibody, Era Antibody, Estrogen receptor alpha delta 3*,4,5,6,7*,8*/941 isoform Antibody, Estrogen receptor 1 Antibody, Estrogen receptor alpha 3*,4,5,6,7*/822 isoform Antibody, DKFZp686N23123 Antibody, Estrogen receptor alpha delta 4*,5,6,7,8*/901 isoform Antibody, Estrogen receptor Antibody, Estrogen receptor alpha E1 E2 1 2 Antibody, ESR1 Antibody, Estrogen receptor alpha E1 N2 E2 1 2 Antibody, Estrogen nuclear receptor alpha Antibody, ESR Antibody, ER Antibody, ESRA Antibody, Estrogen receptor alpha delta 4 +49 isoform Antibody, Estradiol receptor Antibody
Research Areas
Cancer, Cell Signaling, Domain Families, Epigenetics and Nuclear Signalling, Nuclear Signaling Pathways, Receptors, Transcription, Tumor Biomarkers, Zinc finger
Cellular Localization
Cytoplasm, Cell membrane, Cytoplasmic Side, Nucleus, Peripheral membrane protein
Accession Number
NP_000116.2
Gene ID
2099
Swiss Prot
P03372
Erlotinib Hydrochloride
Erlotinib Hydrochloride__EGFR Kinase inhibitor Tadalafil
Product Name
Erlotinib Hydrochloride
Description
EGFR Kinase inhibitor
Purity
>99%
CAS No.
183319-69-9
Molecular Formula
C22H24ClN3O4
Molecular Weight
429.9
Storage Temperature
-20ºC
Shipping Temperature
Shipped Ambient
Product Type
Inhibitor
Solubility
Soluble in DMSO at 18 mg/ml with warming; very poorly soluble in ethanol; very poorly soluble in water; maximum solubility in plain water is estimated to be about 5-20 µM; buffers, serum, or other additives may increase or decrease the aqueous solubility
Source
Synthetic
Appearance
Solid powder
SMILES
H+.C1=C(OCCOC)C(=CC2=NC=NC(=C12)NC3=CC(=CC=C3)C#C)OCCOC.Cl-
InChI
InChI=1S/C22H23N3O4.ClH/c1-4-16-6-5-7-17(12-16)25-22-18-13-20(28-10-8-26-2)21(29-11-9-27-3)14-19(18)23-15-24-22;/h1,5-7,12-15H,8-11H2,2-3H3,(H,23,24,25);1H
InChIKey
GTTBEUCJPZQMDZ-UHFFFAOYSA-N
Safety Phrases
Classification:
Not a hazardous substance or mixture.
Safety Phrases:
S22 – Do not breathe dust.
S24/25 – Avoid contact with skin and eyes.
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection.
Cite This Product
Erlotinib Hydrochloride (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-444)
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123864
Alternative Names
N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine hydrochloride
Research Areas
Cancer, Apoptosis, Cancer Growth Inhibitors, Cell Signaling, Tyrosine Kinase Inhibitors
PubChem ID
176871
Scientific Background
Erlotinib Hydrochloride inhibits the human epidermal growth factor receptor (HER-1/EGFR) tyrosine kinase.
References
1. Ali S., et al. (2008) Mol. Cancer Ther. 7(6): 1708–1719.
EGFR Kinase inhibitor
Not a hazardous substance or mixture.
Safety Phrases:
S22 – Do not breathe dust.
S24/25 – Avoid contact with skin and eyes.
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection.
Anti-ERK5 Antibody (pThr219 + pTyr221)
Anti-ERK5 Antibody (pThr219 + pTyr221)__Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal EGF816
Product Name
ERK5 Antibody (pThr219 + pTyr221)
Description
Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal
Species Reactivity
Human
Applications
,
WB
,
AM
Antibody Dilution
WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
A phospho-specific peptide corresponding to residues surrounding Thr219 and Tyr221 of human ERK2 (AA 216-222)
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 88.637 kDa.
Cite This Product
Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-977)
Certificate of Analysis
A 1:250 dilution of SPC-977 was sufficient for detection of ERK5 (pThr219 + pTyr221) in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123821
Alternative Names
Big MAP kinase 1 Antibody, BMK 1 kinase Antibody, ERK5 Antibody, BMK1 Antibody, EC 2.7.11.24 Antibody, ERK4 Antibody, ERK5 Antibody, Extracellular signal regulated kinase 5 Antibody, MAP kinase 7 Antibody, MAPK7 Antibody , Mitogen activated protein kinase 7 Antibody, MK07_HUMAN Antibody, OTTHUMP00000065906 Antibody, OTTHUMP00000065907 Antibody, PRKM7 Antibody
Cellular Localization
Cytoplasm, Nucleus
Accession Number
NP_002740.2
Gene ID
5598
Swiss Prot
Q13164
Scientific Background
ERK5 or MAPK7 is a protein-serine/threonine kinase. ERK5 is specifically activated by mitogen-activated protein kinase kinase 5 (MAP2K5/MEK5). Upregulation of this gene has been found in breast, prostate, and liver cancer.
Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal
WB
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-ERK5 Antibody
Anti-ERK5 Antibody__Rabbit Anti-Human ERK5 Polyclonal XCT790
Product Name
ERK5 Antibody
Description
Rabbit Anti-Human ERK5 Polyclonal
Species Reactivity
Human, Mouse
Applications
,
WB
,
AM
Antibody Dilution
WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide of human ERK5 (AA373-387)
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 88.637 kDa.
Cite This Product
Rabbit Anti-Human ERK5 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1145)
Certificate of Analysis
A 1:250 dilution of SPC-1145 was sufficient for detection of ERK5 in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123810
Alternative Names
Big MAP kinase 1 Antibody, BMK 1 kinase Antibody, ERK5 Antibody, BMK1 Antibody, EC 2.7.11.24 Antibody, ERK4 Antibody, ERK5 Antibody, Extracellular signal regulated kinase 5 Antibody, MAP kinase 7 Antibody, MAPK7 Antibody , Mitogen activated protein kinase 7 Antibody, MK07_HUMAN Antibody, OTTHUMP00000065906 Antibody, OTTHUMP00000065907 Antibody, PRKM7 Antibody
Cellular Localization
Cytoplasm, Nucleus
Accession Number
NP_002740
Gene ID
5598
Swiss Prot
Q13164
Scientific Background
ERK5 or MAPK7 is a protein-serine/threonine kinase. ERK5 is specifically activated by mitogen-activated protein kinase kinase 5 (MAP2K5/MEK5). Upregulation of this gene has been found in breast, prostate, and liver cancer.
Rabbit Anti-Human ERK5 Polyclonal
WB
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-ERK2 Antibody (pThr185 + pTyr187)
Anti-ERK2 Antibody (pThr185 + pTyr187)__Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal Gilteritinib
Product Name
ERK2 Antibody (pThr185 + pTyr187)
Description
Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal
Species Reactivity
Human
Applications
,
WB
,
AM
Antibody Dilution
WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
A phospho-specific peptide corresponding to residues surrounding Thr185 and Tyr187 of human ERK2 (AA 182-188)
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 41.39 kDa.
Cite This Product
Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-975)
Certificate of Analysis
A 1:250 dilution of SPC-975 was sufficient for detection of ERK2 (pThr185 + pTyr187) in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123733
Alternative Names
ERK Antibody, ERT1 Antibody, ERK2 Antibody, Extracellular Signal Regulated Kinase 2 Antibody, MAP kinase 1 Antibody, MAP kinase 2 Antibody, MAP kinase isoform p42 Antibody, MAPK1 Antibody, MAPK2 Antibody, Mitogen-activated protein kinase 1 Antibody, Mitogen-activated protein kinase 2 Antibody, MK01_HUMAN Antibody, P38 Antibody, P40 Antibody, P41 Antibody, P42MAPK Antibody, PRKM1 Antibody, PRKM2 Antibody protein kinase, protein tyrosine kinase ERK2 Antibody
Cellular Localization
Cytoplasm, Cytoskeleton, Nucleus, Spindle
Accession Number
NP_002736.3
Gene ID
5594
Swiss Prot
P28482
Scientific Background
ERK2 or MAPK1 is a protein-serine/threonine kinase. Phosphorylates many diffrent transcription factors, such as ELK1. Acts as transcriptional repressor by binding directly to DNA. Essential for cyclin D1 induction. MAPK1 phosphoryltaes BCL2, which contributes to cell survival, the suppression of the apoptotic effect of BAD and up-regulation of the antiapoptotic protein MCL-1. Regulates accumulation of p53 during DNA damage response. Constitutively active in many human tumours, supposedly due to altered RAS, RAF, EGFR or other upstream elements. ERK/MAPK pathway was shown to promote cell motilty and tumour cell migration.
Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal
WB
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Anti-ERK2 Antibody
Anti-ERK2 Antibody__Rabbit Anti-Human ERK2 Polyclonal Isavuconazole
Product Name
ERK2 Antibody
Description
Rabbit Anti-Human ERK2 Polyclonal
Species Reactivity
Human, Mouse
Applications
,
WB
,
AM
Antibody Dilution
WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species
Rabbit
Immunogen Species
Human
Immunogen
Synthetic peptide of human ERK2 (AA320-334)
Conjugates
Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated
APC (Allophycocyanin)
Overview:
- High quantum yield
- Large phycobiliprotein
- 6 chromophores per molecule
- Isolated from red algae
- Molecular Weight: 105 kDa

Optical Properties:
λex = 650 nm
λem = 660 nm
εmax = 7.0×105
Φf = 0.68
Brightness = 476
Laser = 594 or 633 nm
Filter set = Cy®5
ATTO 390
Overview:
- High fluorescence yield
- Large Stokes-shift (89 nm)
- Good photostability
- Moderately hydrophilic
- Good solubility in polar solvents
- Coumarin derivate, uncharged
- Low molar mass: 343.42 g/mol
ATTO 390 Datasheet

Optical Properties:
λex = 390 nm
λem = 479 nm
εmax = 2.4×104
Φf = 0.90
τfl = 5.0 ns
Brightness = 21.6
Laser = 365 or 405 nm
ATTO 488
Overview:

Optical Properties:
λex = 501 nm
λem = 523 nm
εmax = 9.0×104
Φf = 0.80
τfl = 4.1 ns
Brightness = 72
Laser = 488 nm
Filter set = FITC
ATTO 565
Overview:

Optical Properties:
λex = 563 nm
λem = 592 nm
εmax = 1.2×105
Φf = 0.9
τfl = 3.4 n
Brightness = 10
Laser = 532 nm
Filter set = TRITC
ATTO 594
Overview:

Optical Properties:
λex = 601 nm
λem = 627 nm
εmax = 1.2×105
Φf = 0.85
τfl = 3.5 ns
Brightness = 102
Laser = 594 nm
Filter set = Texas Red®
ATTO 633
Overview:

Optical Properties:
λex = 629 nm
λem = 657 nm
εmax = 1.3×105
Φf = 0.64
τfl = 3.2 ns
Brightness = 83.2
Laser = 633 nm
Filter set = Cy®5
ATTO 655
Overview:

Optical Properties:
λex = 663 nm
λem = 684 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.8 ns
Brightness = 37.5
Laser = 633 – 647 nm
Filter set = Cy®5
ATTO 680
Overview:

Optical Properties:
λex = 680 nm
λem = 700 nm
εmax = 1.25×105
Φf = 0.30
τfl = 1.7 ns
Brightness = 37.5
Laser = 633 – 676 nm
Filter set = Cy®5.5
ATTO 700
Overview:
- High fluorescence yield
- Excellent thermal and photostability
- Quenched by electron donors
- Very hydrophilic
- Good solubility in polar solvents
- Zwitterionic dye
- Molar Mass: 575 g/mol

Optical Properties:
λex = 700 nm
λem = 719 nm
εmax = 1.25×105
Φf = 0.25
τfl = 1.6 ns
Brightness = 31.3
Laser = 676 nm
Filter set = Cy®5.5
FITC (Fluorescein)
Overview:

Optical Properties:
λex = 494 nm
λem = 520 nm
εmax = 7.3×104
Φf = 0.92
τfl = 5.0 ns
Brightness = 67.2
Laser = 488 nm
Filter set = FITC
PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

Optical Properties:
λex = 535 nm
λem = 627 nm
Laser = 488 to 561 nm
PerCP
Overview:

Optical Properties:
λex = 482 nm
λem = 677 nm
εmax = 1.96 x 106
Laser = 488 nm
R-PE (R-Phycoerythrin)
Overview:

Optical Properties:
λex = 565 nm
λem = 575 nm
εmax = 2.0×106
Φf = 0.84
Brightness = 1.68 x 103
Laser = 488 to 561 nm
Filter set = TRITC
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
Storage Buffer
PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature
-20ºC
Shipping Temperature
Blue Ice or 4ºC
Purification
Peptide Affinity Purified
Clonality
Polyclonal
Specificity
Detects 42 kDa.
Cite This Product
Rabbit Anti-Human ERK2 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1144)
Certificate of Analysis
A 1:250 dilution of SPC-1144 was sufficient for detection of ERK2 in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.
References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123732
Alternative Names
ERK Antibody, ERT1 Antibody, ERK2 Antibody, Extracellular Signal Regulated Kinase 2 Antibody, MAP kinase 1 Antibody, MAP kinase 2 Antibody, MAP kinase isoform p42 Antibody, MAPK1 Antibody, MAPK2 Antibody, Mitogen-activated protein kinase 1 Antibody, Mitogen-activated protein kinase 2 Antibody, MK01_HUMAN Antibody, P38 Antibody, P40 Antibody, P41 Antibody, P42MAPK Antibody, PRKM1 Antibody, PRKM2 Antibody protein kinase, protein tyrosine kinase ERK2 Antibody
Cellular Localization
Cytoplasm, Cytoskeleton, Nucleus, Spindle
Accession Number
NP_620407
Gene ID
5594
Swiss Prot
P28482
Scientific Background
ERK2 or MAPK1 is a protein-serine/threonine kinase. Phosphorylates many diffrent transcription factors, such as ELK1. Acts as transcriptional repressor by binding directly to DNA. Essential for cyclin D1 induction. MAPK1 phosphoryltaes BCL2, which contributes to cell survival, the suppression of the apoptotic effect of BAD and up-regulation of the antiapoptotic protein MCL-1. Regulates accumulation of p53 during DNA damage response. Constitutively active in many human tumours, supposedly due to altered RAS, RAF, EGFR or other upstream elements. ERK/MAPK pathway was shown to promote cell motilty and tumour cell migration.
Rabbit Anti-Human ERK2 Polyclonal
WB
,
AM
APC (Allophycocyanin) | ||
Overview:
|
![]() |
Optical Properties:
λex = 650 nm λem = 660 nm εmax = 7.0×105 Φf = 0.68 Brightness = 476 Laser = 594 or 633 nm Filter set = Cy®5 |
ATTO 390 | ||
Overview:
ATTO 390 Datasheet |
![]() |
Optical Properties:
λex = 390 nm λem = 479 nm εmax = 2.4×104 Φf = 0.90 τfl = 5.0 ns Brightness = 21.6 Laser = 365 or 405 nm |
ATTO 488 | ||
Overview: | ![]() |
Optical Properties:
λex = 501 nm λem = 523 nm εmax = 9.0×104 Φf = 0.80 τfl = 4.1 ns Brightness = 72 Laser = 488 nm Filter set = FITC |
ATTO 565 | ||
Overview: | ![]() |
Optical Properties:
λex = 563 nm λem = 592 nm εmax = 1.2×105 Φf = 0.9 τfl = 3.4 n Brightness = 10 Laser = 532 nm Filter set = TRITC |
ATTO 594 | ||
Overview: | ![]() |
Optical Properties:
λex = 601 nm λem = 627 nm εmax = 1.2×105 Φf = 0.85 τfl = 3.5 ns Brightness = 102 Laser = 594 nm Filter set = Texas Red® |
ATTO 633 | ||
Overview: | ![]() |
Optical Properties:
λex = 629 nm λem = 657 nm εmax = 1.3×105 Φf = 0.64 τfl = 3.2 ns Brightness = 83.2 Laser = 633 nm Filter set = Cy®5 |
ATTO 655 | ||
Overview: | ![]() |
Optical Properties:
λex = 663 nm λem = 684 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.8 ns Brightness = 37.5 Laser = 633 – 647 nm Filter set = Cy®5 |
ATTO 680 | ||
Overview: | ![]() |
Optical Properties:
λex = 680 nm λem = 700 nm εmax = 1.25×105 Φf = 0.30 τfl = 1.7 ns Brightness = 37.5 Laser = 633 – 676 nm Filter set = Cy®5.5 |
ATTO 700 | ||
Overview:
|
![]() |
Optical Properties:
λex = 700 nm λem = 719 nm εmax = 1.25×105 Φf = 0.25 τfl = 1.6 ns Brightness = 31.3 Laser = 676 nm Filter set = Cy®5.5 |
FITC (Fluorescein) | ||
Overview: | ![]() |
Optical Properties:
λex = 494 nm λem = 520 nm εmax = 7.3×104 Φf = 0.92 τfl = 5.0 ns Brightness = 67.2 Laser = 488 nm Filter set = FITC |
PE/ATTO 594 | ||
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm. | ||
Overview: | ![]() |
Optical Properties:
λex = 535 nm λem = 627 nm Laser = 488 to 561 nm |
PerCP | ||
Overview: | ![]() |
Optical Properties:
λex = 482 nm λem = 677 nm εmax = 1.96 x 106 Laser = 488 nm |
R-PE (R-Phycoerythrin) | ||
Overview: | ![]() |
Optical Properties:
λex = 565 nm λem = 575 nm εmax = 2.0×106 Φf = 0.84 Brightness = 1.68 x 103 Laser = 488 to 561 nm Filter set = TRITC |
AP (Alkaline Phosphatase)
Properties:
- Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
- Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
- Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
- Molecular weight: 140 kDa
- Applications: Western blot, immunohistochemistry, and ELISA
HRP (Horseradish peroxidase)
Properties:
- Enzymatic activity is used to amplify weak signals and increase visibility of a target
- Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
- Catalyzes the conversion of:
- Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
- Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
- Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
- High turnover rate enables rapid generation of a strong signal
- 44 kDa glycoprotein
- Extinction coefficient: 100 (403 nm)
- Applications: Western blot, immunohistochemistry, and ELISA
Biotin
Properties:
Streptavidin
Properties:
- Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
- Molecular weight: 53 kDa
- Formula: C10H16N2O3S
- Applications: Western blot, immunohistochemistry, and ELISA
The most significant quorum-regulated virulence factors of P. aeruginosa. It has
The most significant quorum-regulated virulence factors of P. aeruginosa. It has various toxic effects on host tissues at such infection websites as the respiratory epithelium, where its toxicity is thought to become related for the generation of reactive oxygen species when pyocyanin is oxidized. Pyocyanin is below the control from the Rhl and PQS systems and may accordingly be produced even in the absence of LasR soon after a delay. As with all the presence of lasR mutants, high levels of sputum pyocyanin happen to be linked with sophisticated infection in cystic fibrosis individuals. Pyocyanin also serves as an antibiotic due to its redox activity, can act as a terminal electron lasR Cells Overproduce Pyocyanin clinical sputum samples and in constantly fed biofilms in vitro. Indeed, one particular purpose for the remedy resistance of cells growing in biofilms is their reasonably slow growth. As a result, I reasoned that slow-growing or stationary-phase cells maintained in longer-term culture may manifest phenotypes that reflect their behavior inside a a lot more physiologically relevant state. Right here, I report that wild-type and lasR cells exhibit clearly distinct however complementary stationary-phase phenotypes. In addition, wild-type/lasR mixtures can collaborate to enact behaviors inaccessible for the person strains. Components and Techniques Routine bacterial culture Pseudomonas aeruginosa and Escherichia coli strains had been routinely cultured on LB Lennox strong and liquid media at 37uC. Culture stocks have been stored in 25% glycerol at -80uC, and fresh plates have been grown for every experiment. The following antibiotics were applied for selection/maintenance for P. aeruginosa; the upkeep concentration was employed 1662274 for E. coli culture: gentamycin and tetracycline. Irgasan was utilised as an E. coli-specific selective agent. P. aeruginosa strains are listed in Specialized media M63 MedChemExpress SIS3 medium contained one hundred mM KH2PO4, 15.14 mM 2SO4, and 0.36 mM FeSO4H2O. A 5X salts stock was adjusted to pH 7.0 with KOH before autoclaving. To produce the final medium, the 5X stock was mixed with 0.2% casamino acids and 0.5% glycerol from 20% and 50% sterile stocks, respectively, and adjusted to 1X with sterile H2O. M9 medium was primarily based on a salt remedy of 12.8 g/L NaHPO47H2O, 3 g/L KH2PO4, 0.five g/L NaCl, 1 g/L NH4Cl. A 5X salts stock was prepared and autoclaved. To create the final medium, the 5X stock was mixed with 2 mM MgSO4 and 0.1 mM CaCl2 from sterile 1M stocks, the acceptable carbon sources, and was adjusted to 1X with sterile H2O. SCFM medium was made as described by Palmer et al. and was prepared and utilised freshly, because it displayed a brief shelf life. Specialized culture conditions Static cultures of P. aeruginosa have been grown in 4-ml 3PO cost volumes in 12well microtiter plates, in 2-ml volumes in 24-well plates, or in 200ml volumes in 96-well plates. A 1% volume of stationary-phase LB starter culture, adjusted to OD600 = 1.0, was employed for inoculation. Pure autoinducer molecules have been added from one hundred mM stocks in DMSO, and equivalent volumes of DMSO had been employed for controls. acceptor for P. aeruginosa, and is often a terminal signaling molecule within the quorum-sensing cascade. It really is for that reason valuable for monitoring quorum-sensing activity in P. aeruginosa, specifically offered its bright blue color when oxidized. Most preceding laboratory research of P. aeruginosa quorum sensing have observed bacteria exponentially growing in shaking culture. Beneath such conditions, wild-type quorum-sensing behaviors commence during late exponential phase and con.The most essential quorum-regulated virulence factors of P. aeruginosa. It has several toxic effects on host tissues at such infection sites because the respiratory epithelium, where its toxicity is thought to be associated to the generation of reactive oxygen species when pyocyanin is oxidized. Pyocyanin is under the manage on the Rhl and PQS systems and can accordingly be produced even inside the absence of LasR immediately after a delay. As with the presence of lasR mutants, higher levels of sputum pyocyanin have already been associated with sophisticated infection in cystic fibrosis patients. Pyocyanin also serves as an antibiotic because of its redox activity, can act as a terminal electron lasR Cells Overproduce Pyocyanin clinical sputum samples and in constantly fed biofilms in vitro. Indeed, one reason for the treatment resistance of cells expanding in biofilms is their fairly slow development. Consequently, I reasoned that slow-growing or stationary-phase cells maintained in longer-term culture could manifest phenotypes that reflect their behavior within a additional physiologically relevant state. Right here, I report that wild-type and lasR cells exhibit clearly distinct but complementary stationary-phase phenotypes. Furthermore, wild-type/lasR mixtures can collaborate to enact behaviors inaccessible for the person strains. Components and Methods Routine bacterial culture Pseudomonas aeruginosa and Escherichia coli strains have been routinely cultured on LB Lennox strong and liquid media at 37uC. Culture stocks have been stored in 25% glycerol at -80uC, and fresh plates were grown for each and every experiment. The following antibiotics have been made use of for selection/maintenance for P. aeruginosa; the upkeep concentration was utilized 1662274 for E. coli culture: gentamycin and tetracycline. Irgasan was employed as an E. coli-specific selective agent. P. aeruginosa strains are listed in Specialized media M63 medium contained 100 mM KH2PO4, 15.14 mM 2SO4, and 0.36 mM FeSO4H2O. A 5X salts stock was adjusted to pH 7.0 with KOH prior to autoclaving. To create the final medium, the 5X stock was mixed with 0.2% casamino acids and 0.5% glycerol from 20% and 50% sterile stocks, respectively, and adjusted to 1X with sterile H2O. M9 medium was based on a salt solution of 12.8 g/L NaHPO47H2O, three g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl. A 5X salts stock was prepared and autoclaved. To create the final medium, the 5X stock was mixed with 2 mM MgSO4 and 0.1 mM CaCl2 from sterile 1M stocks, the suitable carbon sources, and was adjusted to 1X with sterile H2O. SCFM medium was made as described by Palmer et al. and was ready and used freshly, since it displayed a brief shelf life. Specialized culture conditions Static cultures of P. aeruginosa had been grown in 4-ml volumes in 12well microtiter plates, in 2-ml volumes in 24-well plates, or in 200ml volumes in 96-well plates. A 1% volume of stationary-phase LB starter culture, adjusted to OD600 = 1.0, was applied for inoculation. Pure autoinducer molecules were added from 100 mM stocks in DMSO, and equivalent volumes of DMSO had been made use of for controls. acceptor for P. aeruginosa, and is really a terminal signaling molecule within the quorum-sensing cascade. It’s therefore beneficial for monitoring quorum-sensing activity in P. aeruginosa, in particular provided its bright blue color when oxidized. Most prior laboratory studies of P. aeruginosa quorum sensing have observed bacteria exponentially expanding in shaking culture. Beneath such conditions, wild-type quorum-sensing behaviors start throughout late exponential phase and con.